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Abstract 

 

In recent years, questions related to molecular composition and its implications for nutrition and health have been 

raised as advances in technology speed up the introduction of new diversity into breeding programs, either via 

transgenic technology or by using molecular markers in combination with wide crosses. Metabolite profiling offers 

great opportunities for characterization of this diversity phenotypically with respect to its metabolite composition. It 

provides a powerful resource to guide breeding programs and to alert researchers to positive or detrimental traits at 

an early stage. The power of this approach will be vastly increased by combining it with transcript profiling and a 

systematic survey of the metabolite composition of the plant products that are already on the market. This integrated 

approach and holistic profiling within a systems biology approach enables the careful tracking of the response of the 

organism to conditional perturbations at different molecular and genetic levels using available databases. This 

approach to profiling will not only provide a baseline for comparison of plants with novel traits (PNTs) with 

traditional comparators that are ‘generally recognized as safe’, but also provide a rational framework for risk 

assessment via 'substantial equivalence'.  It also provides important inputs into nutritional research and contributes to 

the public debate about the acceptability of changes in food-production chains and development of science based 

regulation of plants with novel traits.  
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Introduction 

 

Plant biotechnology and genetic modifications offer
 

significant potential in increasing crop production and 

diversification of the nutritional base. However, one 

of the major concerns is the possibility
 
of unintended 

effects caused by transgene
 
integration. Upon random 

insertion of specific DNA sequences into the plant 

genome (intended effect), the disruption, modification 

or silencing of active genes or the activation of silent 

genes may occur. This could result in the formation 

of new metabolites, altered levels of existing 

metabolites, modified metabolism,
 

novel fusion 

proteins, or other pleiotropic effects that could
 

compromise safety, such as production of new 

allergens or toxins (Kuiper et al., 2001; Cellini et al., 

2004). Unintended effects may be partly predictable 

on the basis of knowledge of the place of the 

transgenic DNA insertion, the function of the inserted 

trait, or its involvement in metabolic pathways; while 

other effects are unpredictable due to the limited 

knowledge of gene regulation and gene gene 

interactions. Pleiotropic effects such as multiple 

metabolic changes in tocopherol, chlorophyll, fatty 

acids and phytoene have been reported by 

(Shewmaker et al., 1999) while engineering Canola 

for over-expression of phytoene-synthase. Similarly, 

in the process of manipulating potato to express yeast 

invertase, Engel et al.(1998) reported up to 48% 

reduction in glycoalkaloid levels while Momma et al. 
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(1999) reported a 50% increase in vitamin B6-content 

in their work on expression of soybean glycin in rice.  

Pleiotropic effects have also been demonstrated 

through gain-function analysis. As reported by Fernie 

et al. (2004), the analysis of a gene of known function 

that was introduced into A. thaliana confirmed the 

expected function but also revealed new effects on 

the metabolic network. This included the up-

regulation of the methionine pathway with up to 2–4-

fold increases and the down-regulation of the 

isoleucine pathway, with isoleucine decreasing to 

15% compared to levels in the wild-type. However, it 

should be emphasized that the occurrence of 

unintended effects is not specific to genetically 

modified organisms as it also occurs frequently in 

conventional breeding as reported in Thomas et al. 

(1998); Coulston and Kolbye (1990) and Beir (1990). 

In this paper, we briefly review molecular approaches 

to transgene safety assessment and also provide an 

update of the on-going work in linking transcript 

profiling, metabolite profiling and metabolic 

pathways as a systems biology approach to studying 

risks associated with transgenes.  

 

Assessing genetic changes 

 

The comparison of the chemical composition of the 

genetically modified plant to that of a traditionally 

obtained counterpart has been a key element in the 

safety assessment of genetically modified crops. Such 

a comparative approach reveals similarities as well as 

differences between the transgenic crop and the 

selected comparator and will thus provide 

information on the status of ‘substantial equivalence’ 

(König et al., 2004; Ye et al., 2000). Through 

different platforms, it is possible to compare two 

types of samples, a control sample and a treated or 

genetically modified sample, to identify individual 

components showing differential behavior and to 

therefore account for the responses of the system to 

the applied perturbation. This comparative analysis 

generally relies on the statistically significant 

detection of genetic differences between sample 

groups as a result of gene function at the level of 

protein activity and the consequences of introducing a 

new protein into the metabolic network.  

Different approaches and strategies have been 

applied in the identification of potential secondary 

effects of the genetic modification. Traditionally, 

unintended effects have been identified through the 

targeted approach where an analysis of the 

agronomical and morphological characteristics of the 

new plant is followed by an extensive proximate or 

chemical analysis of key nutrients, anti-nutrients and 

toxicants typical for the plant. Limitations of this 

analytical, comparative approach are the possible 

occurrence of unknown natural toxins and anti-

nutrients, particularly in food plant species with no 

history of safe use, and the availability of adequate 

detection methods. In addition, there are no generally 

accepted and harmonized guidelines that define the 

full extent of the analyses required to fulfill statuary 

risk assessment procedures. Furthermore, the targeted 

approach is considered to be biased and focuses more 

on known compounds and expected or predictable 

changes (Millstone et al., 1999). 

 

To avoid biases, non-targeted methods are now being 

used as an alternative approach for the detection of 

unintended effects, using profiling techniques. This 

type of comprehensive screening for potential 

changes in the characteristics of the genetically 

modified organisms becomes even more important 

since the next generation of GM crops is likely to 

include varieties with improved nutritional properties. 

In the development of this new generation of 

transgenic crops, there is a possibility of more far 

reaching effects on metabolic processes due to 

complexities associated with insertion of large DNA 

fragments or clusters of genes, increased metabolic 

perturbations and generation of new biosynthetic 

pathways. This could lead to the occurrence of 

unpredictable unintended effects not revealed by a 

targeted approach and new methods are therefore 

being used. These methods are genomic based and 

they include transcript profiling, proteomics and 

metabolomics. They  allow for the screening of 

potential physiological, cyclical, developmental or 

environmental changes of the modified host organism 

at different cellular integration levels: at the genome 

level during gene expression and protein translation 

and at the level of metabolic pathways (Kuiper et al., 

2003; Kuiper et al., 2001; Cellini et al., 2004). When 

these genomics-based methods are integrated with 

bioinformatics technologies, it becomes possible to 

investigate the global unintended effects through the 

analysis of transcripts, proteins, and metabolite 

profiles using a systems biology approach. This 

global analytical approach allows studies of transgene 

effects, comparative analysis of genetically modified 

organisms and investigation of biological entities as 

integrated systems of genetic, protein, metabolic, 
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cellular, and pathway events that are in constant flux 

and interdependent (Jonsson et al., 2005).  

 

Metabolomics as a profiling approach for 

transgene risk assessment 

 

Metabolomics as a comprehensive analysis in which 

all the metabolites of an organism are identified and 

quantified (Trethewey et al., 1999; Fiehn et al., 2000; 

Sumner et al., 2003; Bino et al., 2004) has emerged as 

a functional genomics methodology that contributes 

to our understanding of the complex molecular 

interactions in biological systems (Roessner et al., 

2001; Hall et al., 2002; Jenkins et al., 2004). It 

therefore represents the logical progression from 

large-scale analysis of RNA and proteins at the 

systems level.  

In recent years, several reviews have been published 

and described the use of metabolomics in functional 

genomics research, including comparative analysis 

between genetically modified crops and their 

traditional comparators (Fiehn et al., 2000; Roessner 

et al., 2001; Catchpole et al., 2005; Lehesranta et al., 

2005; Chen et al., 2003). In the context of functional 

genomics, metabolomics is now regarded as a viable 

counterpart to protein and transcript profiling 

technologies (Hall et al., 2002; Streeter and Strembu, 

1998; Trethewey, 2001; Trethewey et al., 1999). 

Indeed, the integration of methods based on gas 

chromatography/mass spectrometry (GC/MS), liquid 

chromatography/ mass spectrometry (LC/MS), 

Fourier Transform Mass Spectrometry (FTMS) and 

NMR for the comprehensive identification and 

particularly, the accurate quantification of metabolites 

has attained a technical robustness that is comparable 

to or even better than conventional mRNA or protein 

profiling technologies (Aharoni et al., 2002; Fiehn et 

al., 2000; Roessner et al., 2001; Weckwerth et al., 

2001; Kopka et al., 2004).  

The accurate identification and the relative 

quantification of a high number of metabolites in a 

multitude of samples makes it possible to study 

dynamic metabolomics networks (Fiehn, 2003; 

Weckwerth et al., 2004a; 2004b) and also undertake 

comparative studies between genetically modified 

crops and their traditional comparators that are 

‘generally recognized as safe (Gras)’ based on the 

extent of their natural variation (Roessner et al., 2001; 

Catchpole et al., 2005; Lehesranta et al., 2005). The 

data generated
 

is fundamentally different from 

traditional biological measurements
 

and thus the 

analysis is often restricted to rather pragmatic
 

approaches, such as data mining tools to discriminate 

between
 

different metabolic phenotypes. These 

analytical approaches include tools for data 

acquisition, transformation, validation, aligning, 

deconvolution and machine learning such as Metalign 

(www.metalign.nl), MSFACTS (www.noble.org/ 

PlantBio/ MS/ MSFACTs/ MSFACTs), AMDIS 

(www.amdis.net)  and MASSLAB (Duran et al., 

2003; Bino et al., 2004; Taylor et al., 2002). To 

enable the analysis of transgene effects at the 

metabolic level, the data obtained from
 
metabolomic 

experiments can also be organized into metabolic 

correlation
 

networks based on their pair-wise 

correlations but the key challenge is to deduce 

unknown pathways on the basis of observed 

correlations (Fiehn et al., 2003; Fiehn and 

Weckwerth, 2003; Fiehn, 2003; Steur et al., 2003a; 

2003b; Fiehn, 2002; Weckwerth and Fiehn, 2002; 

Weckwerth et al., 2004). In addition, metabolome 

mass-spectral reference databases such as GMD 

(Kopka et al., 2005), other databases for visualizing 

biochemical and metabolic pathways and user-driven 

tools for displaying data onto diagrams of metabolic 

pathways and processes have also been similarly 

developed recently. These include AraCyc 

(http://www.Arabidopsis.org/ tools/aracyc/); ArMet 

(http://www.armet.org/); MetaCyc http://metacyc.org/ 

and MetNet (Kose et al., 2001; Wurtele et al., 2003; 

Bino et al., 2004; Yang et al., 2005). 

 

Though metabolomics is developing as a reliable tool 

for transgene risk assessment, many critical 

parameters that complicate the interpretation of 

metabolite profiles are yet to be resolved. These 

include the discrepancy between the low number of 

detected metabolites versus the real number of 

possible metabolites in plants that is estimated at 

200,000 (Pichersky and Gang, 2000), variations 

caused by the extraction process, the bias against 

compound classes and most importantly, the overlap 

of many compartmentalized metabolic processes in 

tissue samples. For it to become a more robust 

profiling technique, the integration of metabolomic 

data with other functional genomics information 

using a systems biology approach needs enhancing 

through the establishment of relational databases that 

store, compare, integrate and enable the 

determination of causal relationships between genes, 

transcripts, proteins and metabolites. 
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Transcript profiling in detecting differential gene 

expression for transgene risk assessment 

 

Functional genomics refers to the study of direct 

expression products of genes, the mRNA transcripts 

and the related regulatory elements. It can therefore 

provide insight into the complex metabolic 

relationships within an organism including pathways 

that are relevant for the safety of food crops. It may 

also lead to an in-depth understanding of the natural 

variation in the expression of genes under different 

environmental conditions (Sommerville and 

Sommerville, 1999). The scale and resolution of 

DNA micro-arrays that are used to generate 

transcripts facilitates the detection of alterations in 

gene expression and the possible consequences for 

food safety, if the relevant pathways are known. The 

technology relies on using a large variety of 

individual identified probes that could be cDNA 

sequences or oligonucleotides in a single experiment 

by arraying the probes to a solid surface. The probes 

can either be synthesized on a solid support 

(oligonucleotides, especially gene chips from 

Affymetrix) or synthesized prior to spotting in array 

format (Lockhart and Winzeler, 2000; van Hal, 

2000). All the probes are subsequently hybridized 

simultaneously to the labeled sample under 

investigation. This allows gene expression profiles to 

be established from individual or mixed tissue 

samples such as transgenic plant varieties and 

compared to the unmodified controls (wild types). 

Any differences in gene expression profiles that may 

be detected could be an indication of unintended 

effects of the genetic modification and may provide 

information for further investigations and 

implications for risk assessment (Kuiper et al., 2001; 

2003; Cellini et al., 2004).  

Micro-arrays have recently been used as an 

alternative to traditional analysis of differential gene 

expression (Alwine et al., 1977; Welsh et al., 1992; 

Liang and Pardee, 1992 ) due to the advantage of the 

parallel screening of a large number of identified 

gene sequences for differences in gene expression in 

different types of tissues (Van Hal et al., 2000). In 

relation to food safety or risk assessment of plant 

products, gene expression studies could focus on 

metabolic routes leading to the formation of anti-

nutrients, including natural toxins, as well as on the 

metabolism of positive nutritional factors (micro- and 

macronutrients) to monitor for possible unintended 

changes. Moreover, other cDNAs can be spotted on 

the array to screen for alterations in gene expression 

in other metabolic systems of the plant that may be of 

relevance to the safety or nutritional value of the 

plant. Traditional methods of differential display have 

been applied in the detection of altered gene 

expression in genetically modified plant material 

(Kok et al., 2001; Kok et al.,1998; Liang and Pardee, 

1992) but currently there are no published examples 

available on the application of genomics (DNA micro 

array technology) to the detection of unintended 

effects in GM products. However, within the EU 

Fifth Framework project GMOCARE (GMOCARE, 

2003), the potential for analyzing differential gene 

expression using DNA micro-arrays as a means of 

contributing to future improved food safety 

evaluation strategies is currently being assessed. In 

addition our studies reveal that…….. 

Transript profiling has benefited from some of the 

most advanced genomics database for plants 

including The Arabidopsis Information Resource 

(TAIR) (Rhee et al.; 2003), GARNET. 

http://www.york.ac.uk/res/garnet/garnet.htm, KEGG, 

http://www.genome.ad.jp/kegg /pathway. html and 

TIGER. Recent advances have seen the emergence of 

databases that combine sequence information with 

information on genetics, gene expression, homology, 

regulation, function, interactions, biochemical 

pathways and phenotype information (Lockhart and 

Winzeler, 2000; Gerstein, 2000; Bassett et al., 1999; 

Steinhauser et al., 2004b). Such databases are now 

enabling the better understanding of observed 

differences in gene expression and related phenotypic 

alterations, and hence the subsequent consequences 

for food safety. 

 

Integrating transcript profiling and metabolite 

profiling through a systems biology approach 

 

Biological relevance 

 

Both theoretical and experimental disciplines have 

seen the emergence of systems-based approaches to 

biology in the past few years
 
as typified shifts from 

the more traditional reductionist approach towards 

more holistic approaches, with experimental 

strategies aimed at understanding interactions, such as 

links between transcripts and metabolites, across 

multiple molecular entities (Oksman-Caldentey et al., 

2004). This holistic understanding of the biological 

behavior of a complex system enables the careful 

tracking of the response of an organism to conditional 
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perturbations at different molecular and genetic 

levels. Through holistic profiling within a systems 

biology approach it is possible to identify markers 

and mechanisms
 
that are important to the function of 

the perturbed system,
 

with the ultimate goal of 

developing computational models that
 

enable the 

prediction of the response of the system to any given
 

perturbation (Kitano, 2002; Sweetlove et al., 2003). 

This "systems" approach to biology
 

involves the 

comprehensive characterization of the components
 
of 

a biological system at the transcriptome, proteome 

and metabolome levels (Weckwerth, 2003; Fiehn et 

al., 2001). The three levels of expression profiling 

provide a complete picture of the RNAs, proteins and 

metabolites that allows the inference of relevant 

associations between macromolecules; identification 

of functional linkages between phenotypic 

expressions and construction of models that 

quantitatively describe the dynamics of the biological 

system. In addition, the linkage of functional 

metabolomic information to mRNA and protein 

expression data makes it possible to visualize the 

functional genomic repertoire of an organism (Bino et 

al., 2004), bringing us into a new era of gene 

discovery, understanding biological
 
systems and how 

genes are connected to metabolites (Oksman-

Caldentey et al., 2004; Trethewey, 2001). This 

knowledge has great potential for application, 

particularly in the development and engineering of 

crops that combine an attractive appearance and taste 

with improved levels of phytonutrients such as 

flavonoids and carotenoids (Jonsson et al., 2005). 

 

Integration of metabolites and transcript profiles 

 

The multi-parallel approach combining metabolites 

and transcripts profiling methods are known to 

provide an immediate insight into the behaviour of 

the whole metabolic network after modulation of a 

particular gene function (Fiehn et al., 2001; Oksman-

Caldentey and Saito, 2005). It provides exciting 

opportunities for defining gene function at the level 

of metabolic networks and the overall phenotype in 

the context of a particular organism. Integration of 

metabolite and transcript profiling has shown that a 

statistically significant change in the steady-state 

level of any given metabolite will be triggered by an 

over-expression of 0.1–1.0% of the genes in a 

genome. In some cases, the genes will influence flux 

directly in a pathway and in other cases, they might 

trigger a host of regulatory changes that alter the 

atomic partitioning or the activity of metabolic 

networks (Fernie et al., 2005). 

Due to the well-known connectivity between the 

molecules described by transcriptomic and 

metabolomic approaches, several studies have tried to 

correlate transcript and metabolite profiles to 

decipher metabolic networks, identify candidate 

genes and elucidate gene functions (Urbanczyk-

Wochniak et al., 2005; Urbanczyk-Wochniak et al., 

2004; Sharit et al., 2003; Lavid et al., 2002; Hirai et 

al., 2004; Goosens et al., 2003). For example, in the 

studies by Urbanczyk-Wochniak et al. (2004), 

metabolite–transcript correlations were revealed from 

large data sets collected throughout development in 

wild-type and transgenic tubers engineered to have 

enhanced sucrose metabolism. The transcript levels of 

approximately 280 transcripts that showed 

reproducible changes with respect to control samples 

were systematically plotted against changes in 

metabolite levels of paired samples. A total of 571 

out of the 26,616 possible pairs showed significant 

correlation (at the P < 0.01 level). Most of the 

significant correlations were new and included the 

identification of several strong correlations between 

genes and nutritionally important metabolites. This 

approach has a high potential value in the 

identification of candidate genes for metabolic 

engineering and modifying the metabolite content of 

biological systems (Fernie et al., 2004; Trethewey, 

2001). Another study by the same group (Urbanczyk-

Wochniak et al., 2005) describes the parallel profiling 

of diurnal patterns of metabolite and transcript 

abundance in potato. The study revealed 56 

significant differences observed in metabolic contents 

and 832 significant differences in transcript levels. 

The qualitative comparison of the combined data 

obtained from the parallel analysis of transcripts and 

metabolites suggested that relatively few changes in 

gene expression strongly correlate with changes in 

metabolite levels during a diurnal cycle.  

Significant progress has also been made in 

exploring cellular processes by combining genome-

wide transcriptomics
 
and metabolomics as reported 

by Hirai et al. (2004). In this study, DNA array 

transcriptome
 
analysis was combined with metabolite 

profiling and more specific
 

targeted quantitative 

analysis resulting in a huge amount of data. Novel 

bioinformatics
 
tools were developed to integrate the 

data sets and to generate gene-to-metabolite
 
networks. 

In a similar study Goossens et al. (2003) combined 

cDNA-amplified fragment length
 

polymorphism 
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(AFLP) transcript profiling with targeted metabolite
 

analysis to map the biosynthetic genes involved in 

alkaloid
 
metabolism. Since sequence information for 

many medicinal
 
plants is very limited, the cDNA-

AFLP transcript profiling provided
 
a very powerful 

tool to identify many candidate genes involved
 
in the 

production of secondary metabolites. Functional 

analysis
 
of these candidate genes will generate a lot of 

data and might
 
help to find not only the biosynthetic 

genes of a particular
 
plant pathway but also master 

regulators such as transcription
 

factors that are 

involved in plant secondary metabolism in general.
  

 

Development of integrated databases 

 

Notable progress has been made in the establishment 

of integrated and comprehensive systems biology 

databases that will allow the development of 

biological systems networks by integrating 

transcriptome, metabolome and flux data. These 

include MapMan (http://gabi.rzpd.de/ projects/ 

MapMan/), which is a user-driven tool that displays 

large datasets onto diagrams of metabolic pathways 

or other processes. It is composed of multiple 

modules for hierarchical grouping of transcript and 

metabolite data that can be visualized using a separate 

user-guided module (Usadel et al., 2005; Thimm et 

al., 2004).  Another more comprehensive tool is 

MetNet http:// www. public.iastate.edu/ mash/ 

MetNet/ homepage. html, which contains a suite of 

open-source software tools for systems biology and is 

designed to provide a framework for the formulation 

of testable hypotheses regarding the function of 

specific genes (Bino et al., 2004). Other systems 

biology oriented software have recently been 

developed and they include (CSB.DB) 

(http://csbdb.mpimp-golm.mpg.de/), an open access 

comprehensive systems-biology database that 

presents the results of bio-statistical analyses on gene 

expression data in association with additional 

biochemical and physiological knowledge. The 

database platform provides tools that support insight 

into life's complexity pyramid with a special focus on 

the integration of data from transcript and metabolite 

profiling experiments (Stenhauser et al., 2004). In 

addition, Ludeman et al. (2004) have developed 

PaVESy as a relational sequel data mining and 

managing system for editing and visualization of 

biological pathways. The database design allows 

storage of biological objects, such as metabolites, 

proteins, genes and respective relations, which are 

required to assemble metabolic and regulatory 

biological interactions. The database model 

accommodates highly flexible annotation of 

biological objects by user-defined attributes. 

Some progress has been made in using cDNA 

libraries or EST databases in combination with 

metabolic and gene expression profiles to make 

biological inferences, identify genes  and elucidate 

gene functions when complete genome sequences are 

not available (Mercke et al., 2004; Guterman et al., 

2002; Martin et al., 2004; Ritchman et al., 2005). For 

instance, metabolic profiling performed by Martin et 

al. (2004) on young Norway spruce trees treated with 

methyljasmonate (MeJA) showed the emission of a 

large number of monoterpenes and sesquiterpenes, as 

well as the synthesis of non-volatile diterpenes. The 

group proceeded to screen a cDNA library of young 

spruce shoots and leaves by a combination of 

homology-based PCR and DNA-hybridization 

techniques, thereby isolating nine TPS cDNAs. Each 

cDNA was expressed in E. coli and tested with the 

appropriate substrate. The results of these assays 

indicated that four of the cDNAs encoded 

monoterpene synthases, three cDNAs encoded 

sesquiterpene synthases, and two cDNAs encoded 

diterpene synthases (Fridman and Pichersky, 2005).  

 

Implications for PNT risk assessment and 

regulation 

 

Despite the progress made one of the outstanding 

questions remains “What is the relative power of the 

two phenotyping technologies to discriminate 

biological systems that either differ in developmental 

state or show well-characterized changes in response 

to the expression of transgenes?”. These two main 

functional genomics approaches dealt with in this 

study are ‘information-rich’, and each method is 

vulnerable to various statistical caveats because the 

data generally originate from a few samples, yet each 

sample is characterized by several thousand features 

including genes, m/z values (mass-to-charge ratios of 

metabolites or metabolite fragments) and spectral 

intensities that might lead to difficulties in the 

interpretation and validation of resultant data (Bino et 

al., 2004). For these technologies to be even more 

effective tools for PNT risk assessment and 

regulation, further progress will need to be made in 

the validation of the vast information generation. This 

will allow the studying of the biological entity 

dynamics and analysis of fluxes in metabolic 
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pathways in order to decipher the biological relevance 

of transcripts to metabolites. More comprehensive 

bio-informatic tools need to be developed to extract 

relevant biological information from raw data sets 

using a systems biology approach that integrates data 

sets from both metabolomics and genomics platforms. 

The comprehensiveness of coverage given by these 

two major profiling techniques will also need to be 

improved. As this comprehensiveness increases and 

bioinformatic tools mature, functional metabolomic 

information can be linked to transcriptome datasets to 

allow a better understanding of organisms within a 

systems biology realm. This will make it easier to 

visualize and assess the effects of transgenes and 

perturbations resulting from their integration in 

biological entities. The combination of the new 

techniques of metabolic and gene expression profiling 

will also allow the identification of the function of the 

majority of the genes in plant genomes and also make 

tangible contributions towards comparisons of plants 

with novel traits with the traditional comparators that 

are generally recognized as safe. However, for this to 

be accomplished, the development of publicly 

available databases of crop composition and profiles 

is an absolute requirement in order to determine 

natural variation of compounds within and between 

given plant species. As information is gathered, 

evolving baselines and benchmarks with which to 

compare plants with novel traits could be envisaged. 

These databases would also greatly aid the robustness 

of targeted analyses. 

 

Conclusions 

There is little doubt that the existing profiling 

techniques when used in an integrated manner and 

using a systems biology approach provide sufficient 

basis for science based regulation of PNTs. They 

have proven successful in revealing unintended 

effects but it may be argued, however, that 

unintended effects do not automatically or necessarily 

infer health hazards. Ideally, only those parameters 

that fall outside the range of natural variation should 

be considered further in safety assessment. The main 

impediment however, is the lack of information on 

the natural variation within and between plant 

cultivars for all the parameters that can be measured. 

Safety assessments could be simplified if the 

identification and safety significance of any observed 

differences is known. The regulators need to develop 

guidelines on how different should a particular 

parameter be from its “Gras” comparator for it to be 

considered a risk. However, one major drawback is 

the lack of adequate toxicity databases to aid the 

interpretation of the safety significance of compounds 

with unknown identity and/or function. Major 

differences based on quantities and or novelty of un-

intended effects may lead to the consideration of 

more extensive safety testing but this becomes a 

regulatory issue.  
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