Plant Omics Journal

POJ

Regularities in simple sequence repeat variations induced by a cross of resynthesized Brassica napus and natural Brassica napus
Caihua Gao, Jiaming Yin, Annaliese S. Mason, Zhanglin Tang, Xiaodong Ren, Chao Li, Zeshan An, Donghui Fu*, Jiana Li*

Supplementary Table 1. Statistics data on the number of SSRs and band types amplified by 47 different primer pairs in an introgressed population and parental species.

Primer pairs	Total number of bands	Total number of polymorphic makers	Number of parental bands	$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { parental } \\ \text { bands } \\ \text { sequenced } \\ \hline \end{gathered}$	Number of abnormal bands	Number of eliminated bands	Number of novel bands	P-SSR ${ }^{\text {a }}$	E-SSR ${ }^{\text {b }}$	N-SSR ${ }^{\text {c }}$	Total number of SSR
A125	21	17	8	4	13	4	9	5	6	8	19
A17	4	4	0	0	4	4	0	0	5	0	5
A224	11	8	6	3	5	1	4	3	1	4	8
A241	2	2	0	0	2	2	0	0	2	0	2
A290	6	6	0	0	6	6	0	0	8	0	8
A291	6	6	0	0	6	6	0	0	6	0	6
A293	3	3	0	0	3	3	0	0	6	0	6
A321	9	3	6	0	3	3	0	0	3	0	3
A322	3	3	0	0	3	3	0	0	3	0	3
A34	1	1	0	0	1	1	0	0	0	0	0

A76	9	4	5	0	4	4	0	0	4	0
A80	11	8	6	3	5	3	2	0	0	2
A89	5	2	3	0	2	2	0	0	4	0
A9	9	3	6	0	3	3	0	0	3	0
cen10	6	3	3	0	3	3	0	0	0	0
cen29	18	10	12	4	6	5	1	0	0	0
cen39	20	13	14	7	6	5	1	0	4	0
cen48	9	5	4	0	5	5	0	0	3	0
cen56	8	5	3	0	5	5	0	0	1	0
cen65	6	5	1	0	5	5	0	0	1	0
cen68	7	2	5	0	2	2	0	0	2	0
cen71	11	2	9	0	2	2	0	0	2	0
H47	7	3	4	0	3	3	0	0	4	0
H5	10	9	1	0	9	9	0	0	5	0
H53	5	3	2	0	3	3	0	0	3	0
H6	9	5	4	0	5	5	0	0	4	0
Y104	11	4	7	0	4	4	0	0	0	0
Y12	12	2	10	0	2	2	0	0	3	0
Y24	6	2	4	0	2	2	0	0	2	0
Y28	9	1	8	0	1	1	0	0	1	0
Y3	12	8	4	0	8	8	0	0	2	0
Y30	4	2	2	0	2	2	0	0	2	0
Y34	18	14	4	0	14	14	0	0	0	0
Y36	7	4	3	0	4	4	0	0	2	0
Y49	11	10	7	6	4	0	4	0	6	0
Y5	3	1	2	0	1	1	0	0	1	0

Y51	3	2	1	0	2	2	0	0	1	0	1
Y6	10	3	7	0	3	3	0	0	3	0	3
Y61	8	6	4	2	4	4	0	1	3	0	4
Y66	13	12	2	1	11	4	7	0	0	0	0
Y73	4	4	0	0	4	4	0	0	2	0	2
Y77	19	19	12	12	7	3	4	9	1	2	12
Y8	15	1	14	0	1	1	0	0	0	0	0
Y80	7	7	0	0	7	7	0	0	6	0	6
Y86	15	14	6	5	9	6	3	0	1	0	1
Y88	14	5	9	0	5	5	0	0	0	0	0
Y96	13	8	5	0	8	8	0	0	1	0	1
TOTAL	430	264	211	47	219	184	35	18	117	20	155
Percentage (\%)		-		10.9%	50.9%	42.8%	8.1%	11.6	75.5	12.9	-

a) SSRs detected in parental bands.
b) SSRs detected in eliminated bands.
c) SSRs detected in newborn bands.

Supplementary Table 2. SSR motifs and band types amplified from 47 different primer pairs in an introgressed population and parental species

Name of primer pairs	Bands type	SSR 1	SSR 2
A125	parental	(TA) 12	-
A125	parental	(T) 10	(TA) 12
A125	eliminated	(T) 10	(TA) 10
A125	eliminated	(T) 10	(TA) 12
A125	parental	(TA)8	-
A125	parental	(TA) 7	-
A125	eliminated	(TA)8	-
A125	eliminated	(TA)8	-
A125	new	(T)10	(TA) 8
A125	new	(T) 10	(TA)11
A125	new	(T) 10	-
A125	new	(T) 10	-
A125	new	(T) 10	-
A125	new	(T)10	-
A125	new	-	-
A125	new	-	-
A125	new	-	-
A17	eliminated	(TGA)6	-
A17	eliminated	(GGA)4	(TGA)4
A17	eliminated	(TGA)6	-
A17	eliminated	(TGA)6	-
A224	eliminated	(AAAT)4-(AAGA)3	-
A224	parental	(AAAT)6-(AAGA)3	-
A224	parental	(AAAT)5-(AAGA)3	-
A224	parental	(AAAT)5-(AAGA)3	-
A224	new	(AAAT)4-(AAGA)3	-
A224	new	(AAAT)4-(AAGA)3	-
A224	new	(AAAT)4-(AAGA)3	-
A224	new	(AAAT)4-(AAGA)3	-
A241	eliminated	(AT) 9	-
A241	eliminated	(AT)7	-
A290	eliminated	(A)17	(TA)7-(TA)22
A290	eliminated	(A)19	(TA)8-(TA) 15
A290	eliminated	(A)19	(AT)10-(TA) 17
A290	eliminated	(A)19	(AT)8-(TA)18
A290	eliminated	-	-
A290	eliminated	-	-
A291	eliminated	(TAT) 10	-
A291	eliminated	(TAT) 11	-

A291	eliminated	(TAT) 12	-
A291	eliminated	(TAT) 15	-
A291	eliminated	(TAT) 15	-
A291	eliminated	(TTA) 5	-
A293	eliminated	(TG)7	(GTG)4
A293	eliminated	(TG)7	(GTG)4
A293	eliminated	(TG)7	(GTG)4
A321	eliminated	(ATG) 4	-
A321	eliminated	(TGA)6	-
A321	eliminated	(TGA)4	-
A322	eliminated	(TAA) 9	-
A322	eliminated	(TAA) 11	-
A322	eliminated	(TAA)11	-
A34	eliminated	-	-
A76	eliminated	(GAT)5-(TGA)4-(TGA)6	-
A76	eliminated	(ATG)4	-
A76	eliminated	(GAT)5-(TG	GA)6
A76	eliminated	(ATG)4	-
A80	eliminated	-	-
A80	eliminated	-	-
A80	eliminated	-	-
A80	parental	-	-
A80	parental	-	-
A80	parental	-	-
A80	new	(AT)5	-
A80	new	(AT)5	-
A89	eliminated	(CT)9	(CAT)5-(CAT)4
A89	eliminated	(CT)9	(CAT)5-(CAT)4
A9	eliminated	(CTC)6	-
A9	eliminated	(CTC) 6	-
A9	eliminated	(CTC)6	-
cen10	eliminated	-	-
cen10	eliminated	-	-
cen10	eliminated	-	-
cen29	parental	-	-
cen29	eliminated	-	-
cen29	eliminated	-	-
cen29	eliminated	-	-
cen29	eliminated	-	-
cen29	eliminated	-	-
cen29	parental	-	-
cen29	parental	-	-
cen29	parental	-	-
cen29	new	-	-

Cen39	eliminated	(TA) 5	-
Cen39	eliminated	(AT) 10	-
Cen39	eliminated	(AT) 13	-
Cen39	eliminated	(AT) 10	-
Cen39	parental	-	-
Cen39	parental	-	-
Cen39	parental	-	-
Cen39	eliminated	-	-
Cen39	parental	-	-
Cen39	parental	-	-
Cen39	parental	-	-
Cen39	parental	-	-
Cen39	new	-	-
Cen48	eliminated	(GA) 33	-
Cen48	eliminated	(GA)35	-
Cen48	eliminated	(GA) 34	-
Cen48	eliminated	-	-
Cen48	eliminated	-	-
Cen56	eliminated	(TC) 11	-
Cen56	eliminated	-	-
Cen56	eliminated	-	-
Cen56	eliminated	-	-
Cen56	eliminated	-	-
Cen65	eliminated	(TA)8	-
Cen65	eliminated	-	-
Cen65	eliminated	-	-
Cen65	eliminated	-	-
Cen65	eliminated	-	-
Cen68	eliminated	(T)12-(GA)8	-
Cen68	eliminated	(T)10-(GA) 10	-
Cen71	eliminated	(AG) 5	-
Cen71	eliminated	(AG) 5	-
H47	eliminated	(AG)7	-
H47	eliminated	(AG) 5	(ACA)4-(TCCCT)3
H47	eliminated	(CT) 10	-
H53	eliminated	(AT) 8	-
H53	eliminated	(AT) 5	-
H53	eliminated	(AT) 17	-
H5	eliminated	(AG) 12	-
H5	eliminated	(AG) 12	-
H5	eliminated	(GA)10	-
H5	eliminated	(AG) 11	-
H5	eliminated	(AG) 12	-
H5	eliminated	-	-

H5	eliminated	-	-
H5	eliminated	-	-
H5	eliminated	-	-
H6	eliminated	(AT)9	-
H6	eliminated	(AT) 8	-
H6	eliminated	(AT) 5	-
H6	eliminated	(AT) 5	-
H6	eliminated	-	-
Y104	eliminated	-	-
Y104	eliminated	-	-
Y104	eliminated	-	-
Y104	eliminated	-	-
Y12	eliminated	(ATAA)4-(AT)9	-
Y12	eliminated	(AT) 9	(ATAA)4-(AT)8
Y24	eliminated	(CT)9	-
Y24	eliminated	(CT) 8	-
Y28	eliminated	(AG) 10	-
Y3	eliminated	(GAA)4	-
Y3	eliminated	(GAA)4	-
Y3	eliminated	-	-
Y3	eliminated	-	-
Y3	eliminated	-	-
Y3	eliminated	-	-
Y3	eliminated	-	-
Y3	eliminated	-	-
Y30	eliminated	(AT) 12	-
Y30	eliminated	(AT) 14	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated	-	-
Y34	eliminated		-
Y36	eliminated	(GA)6-(GTCTG)4	-

eliminated eliminated eliminated parental parental parental parental
parental
parental
new
new
new
new
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
parental
eliminated
eliminated
parental
eliminated
eliminated
eliminated
parental
eliminated
new
new
new
new
new
new
new
eliminated
eliminated
eliminated
eliminated
parental
parental
parental
(AG)12-(TGGTC) 3
(TGAT)3-(GAT)17
(TGAT)3-(GAT)17
(TGAT)3-(GAT)17
(TGAT)3-(GAT)15
(TGAT)3-(GAT) 17
(TGAT)3-(GAT) 17
(TGAT)3-(GAT)14
(TGAT)3-(GAT)14
(TGAT)3-(GAT)14
(TGAT)3-(GAT)14
(CT) 8
(GAA)5-(AGA)5
(TGGTT) 3
(TGGTT) 4
(TGGTT) 3
(AGA)4
(AGA)4
(AGA)4
(AGA)4
-
-
-
-
-
-
-
-
(TC) 12
(TC) 12
(GA) 10
(AG) 12
(AG) 14
parental
parental
eliminated
parental
parental
parental
parental
new
new
parental
eliminated
eliminated
parental
new
new
eliminated
parental
parental
parental
parental
parental
new
new
new
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
eliminated
(AT)7-(AG)8
(AG) 15
(AG) 13
(AG) 14
(AG) 13
(AT)5-(AG) 13
(AG) 13
(AG) 14
(AG) 14
-
--(TGA)4
(TC)5-(CT)6
(TC) 11-(TTGAT)5
(TGA)5
(TGA)5
(TGA)4
(CAAAT)3-(GA)6

Y96	eliminated	-	-
Y96	eliminated	-	-
Y96	eliminated	-	-
Y96	eliminated	-	-
Y96	eliminated	-	-

Supplementary Table 3. Details of primer pairs which produce bands that are eliminated and/or new bands in an introgressed population.

Name	Forward sequence 5'-3'	F-TM $^{\text {a }}$		Reverse sequence	R-TM $^{\text {b }}$	Product size
A125	AAACCAAGACCAGCCCATTT	60.7	GGTATGTCAGCAGTCACGTCC	60.6	235	
A17	CAAGGCGAAACAGAGAGGAG	60.1	ACATAGACGGGAACAGACGC	60.1	218	
A224	GACCAGCATCGCTTACGAAC	60.8	ACCCATTGGTCAAACGTGAG	60.8	279	
A241	TCCAGGGAAGAAGACCCTTT	60.0	CCGGCTGCAAAGAGTAGAAC	60.0	144	
A290	CAGAATCTTGTGCTTACCGTTGT	60.6	GTGGCAACTTATGGTGGCTT	60.0	250	
A291	ACATGTCAGCGACAAGTCTTAATAAC	60.0	CAGCAGTCAAGGAAGAAAGCA	60.7	160	
A293	ATGTGTGTGTGTGTGGGTCC	60.2	AGCCACATCAGAGCTCGAAA	61.1	232	
A321	TTGCTTCGGTATCCCATCTC	60.0	AATTTCAAATCCCCAGAAACG	60.2	203	
A322	TGCAGATAAAAGCTCTTAAGGACAA	60.7	ACACAAGAACTTGCCCCAAC	60.0	264	
A34	CAAACACACAAACAACCCACA	60.3	AATGCAGGTGTTGGGAGAAG	60.1	271	
A76	CGCTCGTTTCTTCGAATTGT	60.4	CCTCAACCCCACCACTATCA	60.8	241	
A80	GCATCCGTGCGAGTTAGAAT	60.2	GGTCCTCACGCAAAGATTGT	60.1	267	
A89	GTTGCCTCGGTCACATCTTT	60.1	TCGCCGTTGAGATAGGTTTC	60.2	277	
A9	CAACACCTCAGAGCCTTCGT	60.4	CTGTCGCCGTTCTCTTTCTC	60.1	198	
Cen10	GGCCTAAAAGAGGAGTTGGG	60.1	TGTGTGACCCCTCAAACTGA	60.1	316	
Cen29	GCTTCTTCTGCACCACCTTC	60.0	GATGATGGCAAATGGGAAAC	60.1	438	
Cen39	GACAGCGACACTTGCGTAAA	60.1	CTTTTCTTCTCGACGTTGCC	60.0	438	
Cen48	GGTGCCTTGTCCCTACAAAA	60.0	AAATATCTTCCCAGGCCCAC	60.2	436	
Cen56	GGAACGACTTCCTCCCGTAT	60.3	TGTTTAGAGAATGGGGACCG	59.9	426	
Cen65	AATTTTTAAGCCCGCATCG	60.0	TTATCCGCATGGTTTGAGAA	59.1	191	
Cen68	TTCGAATTTCATCACCACGA	60.0	CAACGGTCCGTAACTGGTCT	60.0	328	

| Cen71 | GACTGTTGGAGCATGGGTTT | 60.0 | CTCACGCCTCAGCTCTCTCT | 60.0 | 485 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Y104 | AAAGCGAAGAACACGGAAAC | 59.4 | CTTGTCCGGTCAGATTTGGT | 60.0 | 361 |
| Y12 | CATAACTCGGGGTCCAAAAA | 59.8 | CTTTCTCGATCCTCCCCTTC | 60.1 | 372 |
| Y24 | GGTCTTGCTTGGAGTTCGAG | 60.0 | GAAACATTTCGTCAGCAGCA | 60.0 | 202 |
| Y28 | TATGCAAAACCCACAGGTCA | 60.0 | AATGTCGAAAAGGTCGCATC | 60.1 | 134 |
| Y3 | AGAAGAAAATGGGCATCGTG | 60.1 | GAGTAGGCTCAGTGCGTTCC | 60.0 | 152 |
| Y30 | GGTTGTCCAGAGGACCAGAA | 60.1 | TGTCATGTCGGTTCGTGACT | 60.2 | 354 |
| Y34 | GATTTGGGATGGGGAAAGTT | 60.0 | TTACCCTACCGAAAACGACG | 60.0 | 302 |
| Y36 | TGATTGCTCGTTGACCAGAG | 60.0 | GCGTGCGAGAGAATCTTACC | 60.0 | 348 |
| Y49 | TCGGTTTCCTGAGCTGAAGT | 60.0 | TCGTGGCGACTCTTCTTTTT | 60.0 | 339 |
| Y5 | TTACCCACCTTGGCTTCATC | 59.9 | GCGTTTCGTCCTCTTCTCAC | 60.0 | 154 |
| Y51 | CTTCCAAGCTCATACCCGAA | 60.2 | CACACGACGTCTCTTTGCAC | 60.5 | 109 |
| Y6 | CTGCAACAATGCAAACAACC | 60.2 | TTGCGAAACGAGAGACAATG | 60.0 | 277 |
| Y61 | GAACAGTCTACAGCCGGAGC | 60.0 | ACCGACCTACAAATACCCCC | 59.9 | 242 |
| Y66 | TCATTTCTCCCGACCATAGC | 60.0 | ACTATGCATGTTTGCCCCTC | 60.0 | 362 |
| Y73 | CTTCGTCTCTCTGTCCCCTG | 60.0 | GAACCGTGATCCGTCGTACT | 60.0 | 379 |
| Y77 | TGCTCTCGTTGCATACCTTG | 60.0 | TATGATTTGCTTTGCTTGCG | 60.0 | 264 |
| Y8 | ACCTTTGAACGGTTGGTCAG | 60.0 | CGCGGGTGTTTATTTTCAGT | 60.0 | 311 |
| Y80 | ATTGAACCCGATTGGACTTG | 59.8 | TGCTAACTGCATGCAACCTC | 60.0 | 239 |
| Y86 | CAACGAAAACAGATCGAGCA | 60.0 | GTCGGAGAGATGGATGGAGA | 60.2 | 359 |
| Y88 | TTCTCTCCATGTTGTGCGTC | 59.8 | ACAAGACGGCAAAGATTGCT | 59.9 | 380 |
| Y96 | TGCTCTGGCTCTTTCGGTAT | 60.0 | TTTAGCGTGTGAGCATCTCC | 59.0 | 315 |
| H47 | GGAAGCCTCTGTGCGAAAAA | 52.0 | TGCCGACGATTTGATAGAGGA | 52.0 | 175 |
| H5 | GGAATCCTACGGAAGAGCAA | 52.0 | AAGGTAACGGTGGCAGTGAG | 54.0 | 150 |
| H53 | CCCAAATACGAAAACAAAGTTTGAC | 53.0 | AGGATCTCATCCGCTTTCCA | 52.0 | 137 |
| H6 | CGAGTTTTTGTGTGTACGTATAGTAAT | 54.0 | CCAAAGTGCGTAAAGGAAGG | 52.0 | 305 |

a) Melting temperature of forward sequences
b) Melting temperature of reverse sequences

