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Abstract 

 

Abiotic stresses including heat are major threats to crop plants especially considering the global warming facts. A pre-exposure to 

heat stress can prime plants and enable them to encounter a severe dose of stress which is lethal to unprimed plants. In this study, in 

order to identifying potential key elements involved in priming responses to heat stress we analyzed a microarray series in 

Arabidopsis thaliana. To this end we conducted differential expression analysis, clustering, annotation and network construction by 

using the publicly available tools. In agreement with experimentally validated results we noticed that different genes were 

differentially expressed between primed and unprimed plants from which genes encoding retro-elements and proteins involved in 

chromatin remodeling were noteworthy. The topology analysis of constructed network highlighted the role of TFs including zinc 

finger and DREB in heat acclimation after priming phase. A total of 33 transcription factors were differentially expressed in primed 

versus unprimed plants five of which were detected to be hub and bottleneck nodes in genes network that may play a role in heat 

stress priming and memory additionally as potential targets to discover new insights to improve stress resistance in crop plants. 
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Introduction 

 

Plants are sessile organisms that should gauge and adapt to 

external stimuli such as extreme temperature, salinity and 

low humidity by different physiological responses (Mittler et 

al., 2012). These responses vary from an immediate to long 

lasting responses; Plants immediate responses to HS happens 

by physiological and genomics changes due to the many heat 

responsive genes (Thomashow, 1999) while long lasting 

responses can be achieved by genome modifications or when 

plants have been already exposed to a moderate stress that 

this exposure may act as a priming phase by imprinting in the 

plants memory (Stief et al., 2014). Therefore, plants will 

acquire a sort of thermo-tolerance if they expose to a 

moderate heat treatment (priming) before exposing to high 

temperature which is lethal to non-adapted plants. The 

acquired thermo-tolerance is maintained over several days 

due to the activation of several inner process that is 

genetically separable from inherited heat tolerance (Charng et 

al., 2006). Despite the relatively good understanding about 

immediate responses to acute HS, except for the biological 

basis, in molecular level it is only little known about the 

thermo-tolerance acquired by priming responses to severe 

HS. Nowadays data mining approaches are prominent 

strategies for extracting meaningful information from a 

growing wealth of biological data including microarrays and 

RNA-Seq that microarrays has been intensively used 

(Khosravi et al., 2015; Mantione et al., 2014) and elucidating 

high-fidelity gene associated networks from transcriptome 

data is one of the most important applications of 

computational systems biology. A GRN is a graph 

representation of biological units in which nodes represent 

genes and edges are the interactions between nodes. 

Generally, tools designed for recovering these interactions 

rely on similarity matrices indirectly measured by correlation 

matrices or mutual information (Feizi et al., 2013). However 

connectivity between nodes does not mean the causal 

relationships and similarity matrices usually includes many 

indirect links that should be identified and removed for 

increasing the reliability of GRN inference algorithms hence 

several sophisticated approaches attempted to remove 

indirect interactions and detect the causal relationships 

between gene pairs (Omranian et al., 2016; Huynh-Thu et al., 

2010). On the other hand studying modularity in 

biomolecular networks is an efficient way to identify key 

components and complexes within transcriptional 

interactions. In graph theory in addition to hub nodes 

(proteins with high degrees), certain nodes with higher 

betweeness which are connected with the shortest paths are 

more likely to be key connectors and likewise critical points 
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controlling important dynamic components in biological 

networks (Faith et al., 2007) that removal of them causes 

biological systems fail to save their coherence thereby these 

nodes were named as bottleneck nodes. In this study, by 

exploiting the publicly available transcriptome data and 

analysis tools, we attempted to perform a transcriptome 

analysis of Arabidopsis thermo-tolerance after a moderate 

heat acclimation phase to the identification of potential key 

genes that are likely crucial for thermo-priming.  

 

Results and Discussion  

 

Transcriptional response to HS priming by identifying 

thermo-tolerance related genes 

 

A total of 181 probsets were up-regulated in primed plants 

versus unprimed ones (supplementary Figure 2A and 

supplementary Table 1) including known genes in HS 

responses such as 16 HSPs; DNAj, HSP70b, HSP20-like 

chaperons, HSP70T-2, HSP17.4, HSP22.0, HSP23.6-MITO, 

HSP21, HSP17.6II, HSP17.6A, HSP18.2, HSP26.5-P, 

HSP17.6C-CI, HSP17.6-CII, HSP81-1, HSP23.5-M and 

HSA32. HSFs include HSFA2, HSFB2A, HSFA3, HSFA1E 

and ATHSF4, FKBP53 and FKBP65, APX2, MBF1C, a 

member of cytochrome P450 family, 3 members of 

dehydrogenase family, 7 genes of transporters family, 2 

genes from Ca2+ signaling pathway, GOLS1, tetraspanin9 

and  GST family protein (ERD9) were another notable up-

regulated genes. From the mentioned genes HSP17.6A, 

HSP22, HSA32, FKBP and APX2 are memory associated 

genes (Baurle, 2016) when FKBP1 mutant showed an 

impaired memory stress (Charng, et al., 2006). HSP22, 

HSP18.2, HSP21 and APX2 are examples of proteins that 

their expression sustain at least 3 days after exposing to HS 

(Stief et al., 2014). MBF1C acts in the up-stream of ethylene 

pathway that its expression is essential for basal thermo-

tolerance and controls the expression of 36 different 

transcripts during heat stress, including the important 

transcriptional regulator such as DREB2A, HSFs and several 

of zinc finger proteins (Suzuki et al., 2008). In the up-

regulation genes we noticed genes encoding transposable 

elements like Copia-type transposon which HSFA2 is 

required for their activation. There is couple of evidences that 

retrotransposons are activated after prolong HS and can 

induce neighbor genes by HS (Ito et al., 2011). Another 

interesting point about differential expression results was up-

regulation of tetraspanin which recently was found to be 

related with stress memory process. Although there is no 

clear correlation between gene expression and DNA 

methylation in Arabidopsis (Colaneri et al., 2013), 

differential expression of several genes related to histone 

modification and DNA methylation including histone-lysine 

N-methyltransferase, ALFIN-LIKE 5 and histone 

acetyltransferase HAC1 in this study seem more interesting. 

In this regard H3K4me3 is a marker of gene activation and 

stress memory (Oh et al., 2008) that probably is activated 

with up and down regulation of ATXR2 and histone H2B 

respectively. ATXR2 is a histone N-lysine methyltransferase 

that activates a couple of genes in abscisic acid pathway in 

drought stress but there is no evidence on its role in 

Arabidopsis stress memory and has been shown to be 

involved in chromatin remodeling in plant response to water 

stress. 160 probsets were down-regulated (supplementary 

Figure 2B and supplementary Table 1) from which FKBP-

like family protein, GSTU26, GSTU14 and 2 genes from 

Calcium-binding EF-hand family protein are noteworthy. 

Moreover GLP4 and pollen allergen 1 extensin were strongly 

down-regulated (FDR<0.01). Further inspection of gene 

expression was performed by grouping the genes into early (4 

and 8 hours) and late (24 and 48) responses to HS 

(supplementary Table 2). In the early and late responses 97 

and 5 genes were respectively up-regulated that the 

expression of several proteinases, NHX2, Copia-type reverse 

transcriptase-like protein, APX2, GolS1, LTP4 in early 

response and histone acetyltransferase of the CBP family 1 in 

late response are more interesting. Furthermore in early and 

late responsess 119 and 7 genes were down-regulated 

respectively. Down regulation of expansin A2 and pollen 

allergen 1 extensin in early responses is notably. Reportedly 

Yan et al., (2014) illustrated the role of expansins in osmotic 

stress tolerance in Arabidopsis. These proteins facilitate cell 

wall extension (Prasad et al., 2010). Down-regulation of 

extensins in this study might be biologically related to growth 

stalling at initial stage of HS (Sampedro and Cosgrove, 

2005). Here to study the potential functions of the up and 

down regulated genes and classify them into four main 

categories namely biological process, molecular function, 

cellular localization and protein classes we used PANTHER 

database (supplementary Figure 3 and 4). We noticed that the 

most of DE genes were grouped in metabolic process (GO: 

0006915), catalytic activity (GO: 0003824), cell part (GO: 

0044464), nucleic acid binding (PC: 00176) and transferase 

(PC: 00220).  

 

Differential responses of TFs to priming-associated thermo-

tolerance 

 

 We used a list of 2576 Arabidopsis TF TAIR IDs compiled 

from Agris (Yilmaz et al., 2011), DAFT (Guo et al., 2005), 

PlantTFDB (Jin et al., 2014) and RARFT (Iida et al., 2005) 

for extracting the expression profiles of TFs in this study. We 

only focused on the highly expressed TFs which were 

expressed above the threshold (two-fold cut-off and with p-

value < 0.01) whereby 33 TFs from different families such as 

HSF, NAC, WRKY, zinc finger, DREB and bZIP were 

passed the filter (Table 1). The hierarchical clustering of 

differential expressed TFs has been provided in 

supplementary Figure 5. Except for genes encoding AGL12, 

WRKY54, zing finger, bZIP, MYB and AP2/EREBP, the rest 

of TFs were up-regulated in early response phase and toward 

the late responses their expression were down-regulated. In 

Arabidopsis thaliana there are at least eight HSFs (Schramm 

et al., 2006) that in this study four of them including 

HSFB2A, HSFA3, HSFA1E and ATHSF4 were up-

regulated. In Arabidopsis drought stress signaling pathway, 

HSFA3 is regulated by DREB2A that in turn will activate 

essential genes for sustaining protein homeostasis. In this list 

CCA1 is involved in phytohormone signaling pathway and a 

regulator in abscisic acid pathway. CCA1 is a Myb-related 

TF that activates the genes conferring the ability of tolerating 

a range of environmental temperatures (Rawat et al., 2011). 

As demonstrated in a study by Barah et al., (2016), among 

the identified TFs, At5g01380, At1g27730, At5g62020, 

At2g46830, At4g31800, At2g42150, At1g21000, At3g02990 

and At5g22290 were shown to be responsive to cold, 

flagellin, salt and light stresses. 

 

Co-expression network analysis 

 

By using the 341 HS-regulated probsets between primed and 

unprimed plants we built a bipartite gene network using 

Pearson correlation coefficient (PCC threshold ≥0.70) and p-

value ≤ 0.01 as a significant threshold for filtering out-ranged 

nodes.  The  constructed  network  is  bipartite  because  they  

https://apps.araport.org/thalemine/report.do?id=1005726
https://apps.araport.org/thalemine/report.do?id=1039333
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https://apps.araport.org/thalemine/report.do?id=1076253
https://apps.araport.org/thalemine/report.do?id=1077201
https://apps.araport.org/thalemine/report.do?id=1085971
https://apps.araport.org/thalemine/report.do?id=1085974
https://apps.araport.org/thalemine/report.do?id=1102829
https://apps.araport.org/thalemine/report.do?id=1054043
https://apps.araport.org/thalemine/report.do?id=1044993
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4345800/#B82
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                                          Table 1. List of HS-responsive TFs between primed and unprimed plants. 

Probset ID TAIR ID Description logFC 

 Up-regulated   

251114_at At5g01380 Homeodomain 1.285 

261086_at At1g17460 TRFL3 1.105 

264814_at At2g17900 ASHR1 1.575 

267140_at At2g38250 Homeodomain 1.998 

267026_at At2g38340 DREB19 2.131 

258133_at At3g24500 ATMBF1C 1.779 

259618_at At1g48000 AtMYB112 1.495 

256576_at At3g28210 PMZ 3.530 

261648_at At1g27730 STZ 2.214 

247509_at At5g62020  AT-HSFB2A 2.098 

248564_at At5g49700 AHL17 1.175 

247655_at At5g59820 AtZAT12 2.258 

266719_at At2g46830 AtCCA1 2.165 

253485_at At4g31800 ATWRKY18 1.007 

258157_at At3g18100 AtMYB4R1 1.193 

261610_at At1g49560 Homeodomain 1.012 

249139_at At5g43170 AZF3 1.284 

267631_at At2g42150 bromodomain 1.723 

262803_at At1g21000 PLATZ 1.118 

259800_at At1g72175 DUF 1232 1.171 

250910_at At5g03720 AT-HSFA3 2.212 

256356_s_at At1g66500 

At5g43620 

Pre-mRNA cleavage 

complex II 

1.658 

258603_at At3g02990 ATHSFA1E 2.153 

249944_at At5g22290 FSQ6 1.2494 

248611_at At5g49520 ATWRKY48 0.823 

246214_at At4g36988 

At4g36990 

ATHSF4 1.490 

 Downregulated   

251420_at At3g60490 Integrase -0.766 

266516_at At2g47880 Glutaredoxin  -1.44 

263549_at At2g21650 ATRL2 -1.258 

261504_at At1g71692 AGL12 -0.787 

258734_at At3g05860 MADS-box -0.648 

257382_at At2g40750 ATWRKY54 -0.714 

256446_at At3g11110 RING/U-box -1.094 
                                             logFC shows the expression ratios in primed plants in contrast to the controls. 

 

 

 
Fig 1. Co-expression network obtained by DE genes between primed and unprimed plants. We illustrated nodes with higher 

connectivity bigger and darker. 
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Table 2. The top 20 common hub and highest rank bottleneck genes derived from topology analysis of GRN constructed by 

GENIE3. 

      TAIR ID Probset ID Description                                      logFC 

AT3G60490 251420_at ERF/AP2 transcription factor family -0.77 

AT3G17030 257931_at Nucleic acid-binding proteins superfamily 0.71 

AT1G80130 262050_at Tetratricopeptide repeat like superfamily protein 0.89 

AT5G58070 247851_at temperature-induced lipocalin 1.46 

AT1G10370 264436_at Glutathione S-transferase family protein 1.24 

1AT3G07900 258648_at O-fucosyltransferase family protein -0.59 

AT3G28210 256576_at zinc finger 3.53 

AT1G53940 263146_at GDSL-motif lipase 2 -0.74 

AT4G28520 253767_at cruciferin 3 -1.67 

AT4G35200 253179_at DUF241 -0.89 

AT2G19900 266690_at NADP-malic 

enzyme1 

1.76 

AT5G17310 250074_at UDP-glucose pyrophosphorylase 2 1.1 

AT3G05860 258734_at MADS-box transcription factor family protein -0.65 

AT5G64410 247284_at oligopeptide transporter 4 -1.26 

AT1G71692 261504_at AGAMOUS-like 12 -0.8 

AT5G15250 250162_at FTSH protease 6 2.18 

AT3G48720 252317_at acyl-transferase family protein -0.8 

AT1G17190 262516_at glutathione S-transferase tau 26 -0.8 

AT4G25200 254059_at ATHSP23.6-MITO 4.97 

AT5G62020 247509_at AT-HSFB2A 2.09 
                           logFC shows the expression ratios in primed plants in contrast to the controls. 

. 

 
Fig 2a, b, c. After clustering of DE genes within co-expression network, each subnetwork was annotated to underlying GO 

categories. 

 

 
Fig 3. Quantative reverse transcription–PCR. Values were expressed in log2FC. Error bars indicate means±s.d. of three independent 

biological replicates each containing a pool of ∼100 seedlings. 
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consist of two layers of nodes (supplementary Table 3). By 

utilizing the NetworkAnalyzer we set nodes with higher 

connections to bigger size and darker color (Figure 1). In co-

expression network the WRKY (AT5G49520) and MYB-

related (AT1G17460) TFs showed the highest connections 

(darker and bigger nodes). AT5G49520 encodes WRKY48 a 

stress induced TF and AT1G17460 encodes a TRF-like 3 TF 

a potential direct target of CCA1 that is expressed during 

expansion stages including petal differentiation and expanded 

cotyledon stage. Next to detect the potential clusters and 

densely interconnected nodes within co-expression network 

we performed cluster analysis and functional classification by 

BINGO Cytoscape plugin with Hypergeometric test and 

Benjamini and Hochberg FDR correction at significant level 

0.05 (supplementary Table 3). As illustrated in the Figure 1 

network was divided to three major sub-networks (Figure 2a, 

b and c); TRF-like 3 TF was grouped in subnetwork 2a. 

Genes within this sub-network were enriched for response to 

heat, temperature stimulus and toxin catabolic process. 

WRKY TF was placed in sub-network 2b. This sub-network 

was enriched for more process including response to reactive 

oxygen species, hydrogen peroxide, chitin, radiation and 

malate metabolic process that could imply on the role of 

some compounds like malate dehydrogenase in thermo-

memory. Sub-network 2c included the least of genes enriched 

for response to metal ion transport and PSII associated light-

harvesting complex II catabolic process. Proteases like 

FTSH6 is a product of this gene category. FTSH6 is a plastid 

metalloprotease which jointly with HSP21 regulate thermo-

memory in Arabidopsis (Sedaghatmehr et al., 2016). 

 

Topology analysis for detecting potential key genes 

 

For conducting a precise topology analysis, inferring a more 

reliable GRN is essential. we therefore firstly  build and then 

compared them by testing the first 10000 highly ranked edges 

over 4775 gene interactions in gold set list obtained from 

AGRIS database (supplementary Table 7). Evidently from 

supplementary Figure 7 computed AUROCs by R package 

minet showed the GENIE3 as the most powerful GRN 

inference algorithm to predict higher rates of true edges over 

the rest of compared GRN inference methods 

(Supplementary Figures 6, 7 and 8). While the 

aforementioned approaches reconstruct GRNs based on 

bilateral relationships, regression-based methods extract one-

to-many interactions between nodes from measurement of 

gene expression (Linde et al., 2015). In this context GENIE3 

infers GRNs by decomposing of network recovery procedure 

to p steps that p is the number of genes and each step is 

consisting of identifying genes that regulates a given target 

gene (Huynh-Thu et al., 2010). As a result we selected 

GENIE3 derived GRN for topology analysis and defined 

genes as hubs and bottlenecks if they are in the top 10% of 

degree distribution (genes that have the 10% highest number 

of neighbors) (Table 2). As we showed in Table 2, genes 

encoding proteases, transferases and transporter are shown as 

hubs and bottleneck. A total of five TFs among the hubs and 

bottlenecks were common between DE TFs (Table 1) 

including zinc finger (AT3G28210), two MADS-boxes 

(AT3G05860 and AT1G71692), ERF/AP2 (AT3G60490) 

and HSFB2A (AT5G62020). All members of the DREB2 

family are involved in the regulation of heat-responsive 

genes. HSFB2A regulates the expression of HSP26.5, 

HSP25.3, HSP70b, APX2, and GolS1 that all of them were 

differentially regulated in this study. The expression of 

HSA32 was also related with expression of HSFB2A 

(Charng et al., 2006). Stress signals perception and 

transmission via calcium signaling and protein kinases 

following by the activation of stress responsive genes are the 

most important processes in plants response to different harsh 

environmental conditions (Padmalatha et al., 2012). 

Consistently, in this study several genes encoding proteins 

involved in calcium signaling and kinases including 

calmodulin like37, Calcium-binding EF-hand family protein, 

Calcium-dependent lipid-binding (CaLB domain) family 

protein, kinase superfamily protein, MAPK/ERK kinase 1 

and  calcium-dependent protein kinase 15 were up and 

Concanavalin A-like lectin protein kinase family protein and 

one of Calcium-binding EF-hand family proteins down-

regulated. Hypothetically these signals in downstream will 

activate TFs especially hubs TFs detected in this assay such 

as zinc finger, MADS-box, DREB and HSF. Furthermore 

plant hormones signaling plays an important role in plant 

abiotic stress responses (Park et al., 2014). In agreement, 

genes encoding MBF1C involved in ethylene signaling 

pathway, CCA1 a key regulator of abscisic acid signaling and 

N-MYC downregulated like 1 a positive regulator of auxin 

signaling pathway were found to be up regulated while allene 

oxide cyclase1,2 involved in jasmonic pathway and Leucine-

rich repeat protein kinase family protein involved in 

phytohormone signaling pathway down-regulated. 

Transcriptome changes due to the activation of 

aforementioned signaling elements and responsive TFs 

would impact on the expression of chaperons (HSPs) that 

there are tremendous of evidences in their role in response to 

HS (Bruce et al., 2007) and in this study sixteen of them were 

clearly up-regulated. Furthermore notable up-regulation of 

antiporter NHX2 involved in turgor regulation and stomatal 

function (Barragán et al., 2012), genes involved in 

detoxification (Thioredoxin/At5g06690 and Ascorbate/ 

At3g09640), stress responding genes (At2g24040, 

At3g53250, At4g11210, At5g15960 and At5g15970), redox 

exchanges (At5g06690 and At2g47880), energy production 

including DEAD/DEAH box helicase (At5g65900), 

ribonuclease T2 (At5g18040) and Adenine nucleotide alpha 

hydrolase (At1g68300) are examples of protecting strategies 

which considered to be achieved by priming responses to HS 

detected in this study. 

 

Materials and Methods 

 

Datasets used and pre-processing   

 

We firstly downloaded GEO Series GSE72949 from NCBI 

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database. In this 

experiment, Arabidopsis thaliana Col-0 4-d-old seedlings 

were subjected to heat regime of 4, 8, 24, and 48 hours as 

priming stimulus (that is, during the memory phase). For the 

HS phase, primed seedlings and control plants (unprimed) 

were subjected to a heat regime of 1.5 h, 37°C; 1.5 h 

recovery at 22°C; and 45 min, 44°C. After the priming HS 

treatment, seedlings were returned to normal growth 

condition for 3 - 4 days (recovery or memory phase). 

Supplementary Figure 1 is a schematic representation of 

experimental design used in this study. The gene expression 

supposed to be different between primed and unprimed plants 

due to the memory phase that primed plants have been 

exposed to a moderate heat. The subsequent bioinformatics 

analysis was done to identify the differentially regulated 

genes arise from memory phase. 

Raw CEL files were normalized with RMA method 

embedded in affy R package (http://www.bioconductor.org). 

By using the limma R package, thermo-tolerance associated 

DE genes were identified between primed and unprimed 

https://apps.araport.org/thalemine/report.do?id=1007840
https://apps.araport.org/thalemine/report.do?id=1085659
https://apps.araport.org/thalemine/report.do?id=1085659
https://apps.araport.org/thalemine/report.do?id=1065765
https://apps.araport.org/thalemine/report.do?id=1069564
https://apps.araport.org/thalemine/report.do?id=1074979
https://apps.araport.org/thalemine/report.do?id=1084156
http://journal.frontiersin.org/article/10.3389/fpls.2016.00501/full#B45
https://apps.araport.org/thalemine/report.do?id=1054043
https://apps.araport.org/thalemine/report.do?id=1102817
https://apps.araport.org/thalemine/report.do?id=1102817
http://journal.frontiersin.org/article/10.3389/fpls.2016.00501/full#B9
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samples if expression level changes was above the defined 

threshold (absolute Log-fold change ≧ 1 and with p-value < 

0.05).  DE gene were functionally annotated by PANTHER 

server (http://www.pantherdb.org/geneListAnalysis.do) with 

default parameters. 

 
Co-expression network analysis 

 
In order to identifying potential signatures of transcriptomic 

response to thermo-priming we reconstructed co-expression 

network by setting p-value ≤ 0.01 and Pearson correlation 

coefficient ≥ 0.75. The network was visualized by Cytoscape 

3.4.0. The genes within co-expression network were clustered 

to underlying sub-networks by Glay software embedded in 

clusterMaker Cytoscape plugin (http://apps.cytoscape.org/ 

apps/clustermaker).  Subsequently the modules were 

functionally classified by BiNGO Cytoscape plugin (Maere 

et al., 2005) to determine significantly over-represented GO 

terms. For network being more informative, we added 

publicly interaction databases including ATPID 

(http://www.megabionet.org/atpid/webfile/), AtPIN 

(atpin.bioinfoguy.net/) as well as Arabidopsis promoter 

information from AGRIS (http://agris.fao.org/agris-

search/index.do).  

 
Topology analysis of constructed GRN  

 

For constructing GRNs, we utilized five algorithms 

considering their ability in recognition and removing of 

indirect links between genes including matlab 

implementations of Global Silencing by (Barzel and 

Barabási, 2013) and Network Deconvolution by (Feizi et al., 

2014), Graphical Gaussian Models by (Schäfer and 

Strimmer, 2005) using GeneNet R package, R 

implementation of GENIE3 by Huynh-Thu  et al., (2014) and 

CLR using spearman estimator embedded in minet R package 

(Faith et al., 2007). To assess the accuracy of algorithms in 

GRN discovery and choosing the better one for topology 

analysis, we drew the ROC curve that plots true positive rate 

versus the false positive rate by minet R package 

(https://www.bioconductor.org/). Centrality analysis of genes 

within the preferred GRN was performed by utilizing 

CytoNCA Cytoscape plugin (Tang et al., 2014).  

 

qRT-PCR analysis 

  

In order to testing reliability of our in silico analysis, we 

selected 10 genes from significantly HS-regulated genes for 

performing qRT-PCR analysis. Synthesis of cDNA and qRT-

PCR by SYBR Green were done as described in (Balazadeh 

et al., 2010). qRT-PCR was done on an ABI PRISM 7900HT 

sequence detection system (Applied Biosystems Applera, 

Darmstadt, Germany). Expression levels were normalized 

against the expression level of ACTIN2. We designed the 

primers by Quantprime program (Arvidsson et al., 2008) 

(supplementary Table 6). The results presented are from three 

independent biological replicates from different plants (p-

value < 0.05, student’s t-test) (Figure 3 and supplementary 

Table 8).  

 

Conclusion  

 

In the present study we performed a comprehensive 

bioinformatics analysis to the identification of priming 

influences in transcriptome level. We used a reference 

network to assess the accuracy of constructed GRNs and 

reliability of identified hubs and bottleneck genes. Moreover 

we tested several of identified genes by qRT-PCR analysis. 

However by using more adequate number of samples the 

results would be more reliable. Furthermore gene expression 

network analysis at transcriptome level could be more 

intensified through merging studies with protein networks to 

draw more precise conclusions regarding predicted master 

regulators. Finally we used unweighted co-expression 

network and modularity analysis we then should be cautious 

about dynamic nature of living organisms via strictly analysis 

of statics networks. 
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