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Abstract 

 

Infected ‘Campbell Early’ grape leaf tissues were collected according to four different tissue locations of brown spot disease: center 

of the lesion (A), lesion border (C) the uninfected leaf tissue (D) and tissue from A and C as well as the lesion halo (B). A total of 

118 metabolites were identified using polar phase GC-MS analysis with sample derivatization and annotated four different sampling 

tissues. Metabolites were clustered into three groups according to tissues (tissue A, tissue B, and tissues C and D) in the PCA score 

plot. Tissues C and D were separated in the PCA plot; therefore, they had similar metabolite contents variations. 20 of the 

metabolites were significantly related to tissues A and C in the S-plot of OPLS-DA. Most of the metabolites, including caffeic acid, 

succinic acid, and citric acid, were increased in related contents in uninfected tissues (C and D) compared with lesions (A and B). In 

contrast, D-mannitol, xylitol, and raffinose were increased in the lesion tissues (A and B). Neohesperidin, lactulose, and 

dehydroascorbic acid were found in the tissue B. As a result, those three metabolites can be expected to relate to the defense 

mechanism of grapes against brown leaf spot disease. 

 

Keywords: Disease resistance; GC-MS; Metabolic profiling; Multivariate data analysis; Vitis labruscana. 

Abbreviations: CV-ANOVA_Cross-validated analysis of variance; FAME_Fatty Acid Methyl Ester; MSTFA_N-methyl-N-

(trimethylsilyl)-trifluoroacetamide; OPLS-DA_orthogonal projections to latent structures discriminant analysis; PCA_principal 

component analysis; PLS-Partial Least Squares; ROS_reactive oxygen; VIP_variable importance for projection. 

 

Introduction 

 

The grape is an important fruit used to make wine and raisins. 

The grape ‘Campbell Early’ is a most important table grape 

cultivar of Korean vineyards, but is susceptible to brown leaf 

spot disease caused by Pseudocercospora vitis (Kim and Shin, 

1998). Brown leaf spot disease often causes defoliation of the 

vine that can be lead to severely decreased grape quality and 

vine vigor before death (Park et al., 2004; Jung et al., 2009). 

The disease resistance metabolites in plants are not easily 

recognized because a lot of primary and secondary metabolites 

are related to disease resistance, and the metabolic pathways 

are complicated and linked to each other through various 

outside stresses.Many previous studies have searched 

pathogen-specific chemicals that are known secondary 

metabolites. Although those secondary metabolites are 

important in resistance to the pathogen locally, they cannot 

completely explain metabolite variations on the other side of 

the plant. Metabolic profiling is a new, useful technique to 

provide clues within the whole metabolite scale (Sumner et al., 

2003). One technique for studying metabolomics is GC-MS. 

High-resolution separations from the GC column are analyzed, 

and the precise electron ionizations are searched in libraries 

(Warren, 2013). Although the GC-MS technique is not 

sufficient for analysis of high molecular weight compounds, 

derivatization techniques could help to analysis for some part 

of metabolites (Knapp, 1979). Some advantages of GC-MS 

analysis in metabolomics are the well-organized stable protocol 

from sampling to data analysis and relatively broad coverage of 

compound classes (Lisec et al., 2006). Silylation is the most 

suitable derivatization method for non-volatile metabolites such 

as hydroxyl and amino compounds (Pierce, 1968). Some 

silylation agents were tested using the GC-MS platform for 

plants, which has high reliability and reproducibility. One 

silylation agent, N-methyl-N-(trimethylsilyl)-trifluoroaceta- 

mide (MSTFA) was used to reveal the whole range of 

metabolites in plants (Fiehn et al., 2000; Roessner et al., 2000; 

Lisec et al., 2006). Recently, some metabolomic studies used 

GC-MS to evaluate disease related metabolites as bio-markers 

of a particular pathogen, such as downy mildew on grapes 

(Batovska et al., 2009), Fusarium head blight on wheat (Warth 

et al., 2014), blast on rice (Johns et al., 2011), bacterial blight 

on rice (Sana et al., 2010), and Alternaria brassicicola on  

Arabidopsis (Botanga et al., 2012). These previous experiments 

used GC-MS and multivariate data analysis to identify a new 

aspect for pathogen related metabolites and well-known 

secondary metabolites. One multivariate data analysis is 

principal component analysis (PCA), which is an unsupervised 

method that reduces the dimensionality of the variances 

(Ericksson et al., 2006). Plots in the multidimensional space are 

used to determine the similarities and differences between 

treatment data. Another supervised analysis, orthogonal 

projections to latent structures discriminant analysis (OPLS-

DA), is a recent modification of the Partial Least Squares (PLS) 

method. This method concentrates its predictive power into the 

first component to provide an improved model for transparency 

and interpretability (Ericksson et al., 2006). Multivariate data 

analysis is critical in metabolomic studies for providing a 

significant clue to the important findings in the numerous 

experiments. In this study, we aimed to find the all the 

pathogen-specific metabolites against Pseudocercospora vitis 

in the grape cv. ‘Campbell Early’ using GC-MS and 
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multivariate data analysis. Moreover, we also attempted to 

identify the correlation between the variability of metabolites 

and disease development using two different multivariate 

analyzes, PCA, and OPLS-DA.  

 

Results and Discussion 

 

Leaf metabolite differences with unsupervised analysis (PCA) 

 

There were 118 of metabolites on average in each replicated 

sample when using retention indexing in the metabolic Fiehn 

library. Metabolites in the different leaf tissues were plotted 

using PCA (Fig. 1). The leaf tissues were plotted in three 

different groups based on the eigenvector scores, but replicates 

of tissue C and D samples were plotted together. Two principal 

components (PC) accounted for 76.4% of total variations, PC1 

for 50.7% and PC2 for 25.7%. The PCA model quality was 

validated based on two variables: R2X and Q2X. Our results 

revealed an R2X value of 0.764 and a Q2X value of 0.534. 

Generally, R2X values range between 0 and 1, where 1 

indicates a model with a perfect fit. Moreover, a Q2X value > 

0.5 indicates a model with good predictability and a value 

between 0.9-1.0 indicates a model with excellent predictability 

(Eriksson, 2006). In this PCA, results were used to find 

metabolite differences between the tissues collected. The PCA 

is an unsupervised method that attempts to create a model of 

the data without a priori information; therefore, it can provide 

an overview of the whole metabolite profile and find the 

suspected related metabolite among the samples using a 

qualitative analysis. Thus, PCA does not provide statistically 

significant evidence for finding a biomarker. In our PCA result, 

tissues A, B and C separated, but tissues C and D were not 

separated from each other (Fig. 1 A). Tissue C, from the border 

region of the disease symptom, was expected to contain more 

highly activated metabolite contents than the other tissues. 

Tissue C was not different from tissue D, which looked like 

normal tissue but was located on the same diseased leaf. 

Therefore, tissue D already fully produced the defense 

metabolite against outside invaders like tissue C. Tissue C and 

D samples were located in the same direction on the PCA score 

plot (Fig. 1 A) and most of the metabolites related to tissue C 

and D were weighted on the right side of the PCA loading plot 

(Fig. 1 B). This result indicated that most of the metabolites of 

tissues C and D were the same, but the contents of each tissue 

were different. The PCA loading plot showed that some of the 

metabolites related to tissue A were raffinose, xylitol, and D-

mannitol (Fig. 1 B).  

 

Leaf metabolite differences with supervised analysis (OPLS-

DA) 

 

The supervised analysis method, OPLS-DA, is similar to PLS-

DA, but a single component is used as a predictor for the model 

and the other components describe the variation orthogonal to 

the first predictive component (Westerhuis et al., 2010). In this 

experiment, we collected different tissues from the leaf and 

tried to find a significant metabolite using OPLS-DA. The S-

plot is generally used to identify the factors that interact with 

each other in the OPLS-DA model, and the results are useful 

for identifying a metabolite marker with statistical significance 

in the different conditions (Wiklund et al., 2008). Before S-plot 

plotting, data are cut down based on variable importance for 

projection (VIP) values > 1 and p < 0.05 to select for 

potentially related metabolites. The selected metabolites with 

VIP values > 1 were associated significantly with the 

separation shown in both S-plot models, as the functions 

calculated from the weighted sum of squares of the PLS weight 

indicate the importance of the selected variable to the whole 

model (Azizan et al., 2012).  In this study, a total six different 

OPLS-DA models were combined for four different leaf tissue 

samples. Among the six different OPLS-DA models, only three 

were significantly different from each other based on the 

metabolite contents (Table 1). The first model (A vs. B) 

resulted in one predictive and one orthogonal (1 + 2) 

component with a cross-validated predictive ability Q2(cum) of 

87%, a total explained variance R2X of 63%, and a variance 

related to class separation R2 p(X) of 18%. The second model 

(A vs. C) resulted in one predictive and three orthogonal 

components (1 + 2). The predictive ability Q2(cum) was 95%, 

the total explained variance R2X was 69%, and the variance 

related to the differences between the two classes R2 p(X) was 

14%. The third model (A vs. D) resulted in one predictive and 

three orthogonal components (1 + 2). The predictive ability 

Q2(cum) was 90%, the total explained variance R2X was 67%, 

and the variance related to the differences between the two 

classes R2 p(X) was 13% (Table 1). Another three models 

demonstrated the none of significance into the cross-validated 

analysis of variance (CV-ANOVA) (p < 0.05) and were not 

clearly separated from each other in the PCA score plot (Fig. 1). 

In general, values of R2 and Q2 > 50% are considered 

satisfactory for metabolic experiments (Azizan, 2012), but CV-

ANOVA uses a statistical diagnosis method in the PLS and 

OPLS models (Eriksson et al., 2008). Despite that the R2X and 

Q2(cum) were > 50%, models B vs. C and B vs. D showed no 

significance (p < 0.05) in their differences according to CV-

ANOVA. We can find a meaningful metabolite to compare 

laboriously each metabolite with using an ANOVA test in PCA, 

but the CV-ANOVA in the OPLS model can help to find a 

metabolite that is statistically significant between models. 

 

Disease related metabolites 

 

A comparison between tissues A (lesion) and C (border of the 

lesion) was expected to find a metabolite that was closely 

linked to brown spot disease in the grape ‘Campbell Early’. 

According to the A vs. C model on the OPLS-DA, a total of 20 

metabolites were significantly related to the symptom lesion 

and border of the lesion (Fig. 2). Of those metabolites, 17 were 

decreased in the tissue A from the lesion. These metabolites 

were classified as amino acids, sugars, and organic acids and 

included D-glucose-6-phosphate, D-allose, fructose, L-glutamic 

acid, succinic acid, citric acid, D-malic acid, caffeic acid, 

phosphoric acid, gluconic acid, glyceric acid, catechin, 

galactinol, epicatechin, and purine-riboside. Most metabolites 

were included in the basic metabolic pathway as a part of the 

plant defense system. Both catechin and epicatechin have been 

reported as part of the grape’s disease resistance. D-glucose-6-

phosphate is a precursor for hypersensitive reaction and 

reactive oxygen species (ROS) production against the pathogen 

(Asai et al., 2011). In addition, D-allose acts a triggering 

molecule in the pathogen attack (Kano et al., 2013) and 

gluconic acid has antimicrobial activity and regulates other 

antimicrobial compound production (Werra et al., 2009).  

In contrast, three chemicals, D-mannitol, xylitol, and raffinose, 

were significantly increased in the center of the lesion. Those 

chemicals were found similarly to the PCA result (Fig. 1 B). 

Those chemicals were previously reported to be related to plant 

and microbe interactions; for example, raffinose is an 

oligosaccharide that accumulates in plant cells in response to  
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Table 1. Cross-validation of OPLS-DA models at the tissue compares combination models collected different leaf tissues from grape 

‘Campbell Early’ leaves infected by Pseudocercospora vitis.   

Modela 
Fitting values CV-ANOVA 

Componentb R2X R2Y Q2(cum) p 

A vs. B 

A vs. C 

A vs. D 

(1+2) 

(1+2) 

(1+2) 

0.630 

0.691 

0.669 

0.987 

0.995 

0.990 

0.877 

0.949 

0.895 

0.048 

0.010 

0.043 

B vs. C 

B vs. D 

C vs. D 

(1+3) 

(1+5) 

(1+3) 

0.548 

0.560 

0.612 

0.994 

0.993 

0.992 

0.691 

0.524 

0.228 

0.296 

0.560 

0.976 
a 

Center of the lesion (A), lesion, a halo of lesion border, and lesion border of the leaf (B), lesion border (C) and not infected leaf tissue (D). Values were calculated with 

Simca-P b Component number (predictive + orthogonal). 

 

A         B 

 
 

Fig 1. Principal component analysis (PCA) plots of four different locations of the leaf tissue of ‘Campbell Early’ grape infected by 

Pseudocecospora vitis. A. Score plot PC1 (50.7%), PC2 (25.7%), B. loading plot showed just three metabolites weighted to tissue A, 

but lots of chemicals weighted tissue C and D. 

 

 

A       B 

 
 

Fig 2. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) plots of compare with two of grape ‘Campbell 

Early’ leaf tissues infected by Pseudocecospora vitis. A. Score plot of OPLS-DA, Variation explained between tissues (69%), within 

tissue (14%), B. S-plot of OPLS-DA, The numbered metabolites are satisfied condition (VIP > 1 and p (corr) ≥ |0.5|), 1. Raffinose, 2. 

Galactinol, 3. Xylitol, 4. D-malic acid, 5. L-glutamic acid, 6. Lactose, 7. Phosphoric acid, 8. Palatinitol, 9. Caffeic acid, 10. Glyceric 

acid, 11. Succinic acid, 12. D-glucose-6-phosphate, 13. Purine riboside, 14. D-allose, 15. D-mannitol, 16. Catechin, 17. Epicatechin, 

18. Citric acid, 19. Gluconic acid, 20. Fructose. On the left side numbered chemicals were significantly correlated to tissue A, and 

numbered chemicals on the right side were correlated to tissue C. 
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Fig 3. Putative metabolites significantly related to the disease were compared with different leaf tissue locations in the grape 

‘Campbell Early’ infected by Pseudocecospora vitis. Y axis is a related area in GC-MS peak; X-axis is different infected leaf tissues.   

 

environmental stresses (Zhou et al., 2012) and D-mannitol is 

used to suppress ROS-mediated plant defenses by 

phytopathogenic fungi (Jennings et al., 1998). The role of 

xylitol in the plant defense mechanism in grapes is unclear at 

this time, but it is well-known as an inhibitor of various 

bacteria. 

On the other hand, we used S-plot analysis to find a precise 

metabolite to tissue B, by comparisons between models (A vs. 

B and A vs. C). Tissue B contained a yellow halo, which was 

expected when a specific metabolite had an intense resistance 

response against the pathogen. We excluded a common 

metabolite between models A vs. B and models A vs. C and 

then collected three tissue B-specific metabolites: 

neohesperidin, lactulose, and dehydroascorbic acid (Fig. 3). 

Those metabolites were highly present in tissue B, including in 

the halo of the lesion, and are expected to have a strong defense 

against the pathogen. In the oxidation caused by ultraviolet 

light in plants, L-ascorbate acts as an anti-oxidant by absorbing 

active oxygen and turning over dehydroascorbic acid (Parsons 

and Fry, 2012). In a previous study, the dehydroascorbic acid 

level was higher in Arabidopsis infected with pathogen fungi 

Alternaria brassicicola compared with Arabidopsis that was 

mock inoculated after 24 hours (Botanga et al., 2012). 

Neohesperidin is an isoflavone, which accumulates to 

considerable levels in the leaves and fruit of citrus species; 

although, the biological role in plants is not clear (Frydman et 

al., 2005). However, lactulose is converted from lactose by 

beta-galactosidase (Lee et al. 2004), but, unfortunately, there is 

little known about the role of lactulose in plant disease 

resistance. These metabolites are expected to be specific for the 

grape ‘Campbell Early’ and brown spot disease caused by 

Pseudocercospora vitis. Cercospora is closely related to the 

genus Pseudocercospora, and the pathogenicity and disease 

mechanism in their host have been studied. Cercospora spp. 

produces a photosensitizing fungal toxin cercosporin, which 

makes singlet oxygen (1O2) in light (Daub and Hangarter, 

1983). As a result, the activated oxygen caused peroxidation of 

the host plant cell membrane lipids. Finally, nutrients are 

leaked from the broken host cell membrane (Daub and 

Ehrenshaft, 2000). In our result showed that both 

dehydroascorbic acid and neohesperidin have predicted roles in 

plant disease resistance such as antioxidant process. In 

conclusion, some metabolites have already been reported to 

have a part in the defense mechanism in plants, and some have 

been identified through the statistical analysis. Our results 

suggested tissue specific metabolites that may have the 

potential for use as biomarkers, and may provide meaningful 

information for a different line of research. 

 

Materials and Methods 

 

Plant materials 

 

Grape ‘Campbell Early’ leaves which were clearly developed 

lesion was collected in the experimental vineyard Suwon Korea 

at harvest season in 2014. Cleaning and removing 

contamination of leaf surface with an alcohol soaked paper 

towel. Leaf tissues were separated to four different tissues on 

the leaf disease lesion: center of the lesion (A), lesion border (C) 

the uninfected leaf tissue (D) and tissue from A and C as well 

as the lesion halo (B). Each leaf tissue sample was made 5 mm 

leaf disk with a punch immediately put on the liquid nitrogen. 

Each part of 20 leaf disk tissue was grinded on a mortar with 

LN2. Each tissue sample was prepared five replicate, and each 

50 mg of powder was transfer into a 1.5 ml tube. Grinded 

samples were kept at -80℃ deep freezer and analyzed within 

one week. 

 

Sample extraction 

 

Sample preparation method was use modified to Weckwerth 

(2004). Metabolite extraction was obtained from sampling tube 

in 1 ml of extraction buffer degassed methanol, chloroform, 

water, (5:2:2, v/v/v) and shaking 5 minutes at 4℃. Extracts 

centrifuged at 20,000 rpm,  the supernatant was transferred new 

tube, and dried in speed vacuum dryer for 5 hours (Bioneer, 

Korea). For derivatization, added 20 μl of methoxyamine 

solution, methoxyamine (Sigma 226904, USA) 20 mg-1·ml 

pyridine (Sigma 270407, USA) in dried sample tubes and 

shaking for 90 minutes at 28℃. 180 μl MSTFA (Fluka 68768, 

Swiss) and 10 μl FAME marker (Supelco C8-C24, USA), use 

standard retention time marker, were added in each tubes and 

then shaking for 30 minutes at 37℃. Each prepared sample was 

transfer auto-sampler vial with insert (Supelco #24722, USA).  

 

GC-MS analyze 

 

GC-MS system consisted of a gas chromatograph (Agilent 
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6890, USA) and mass spectrometer (Agilent 5985, USA). 1 μl 

of sample was injected into a splitless mode, and operating at a 

temperature of 230 °C at a helium carrier gas flow rate of 1 ml 

min−1. The column used an HP-5MS, 5% phenyl methyl 

siloxane. The temperature was 3 min heating at 80°C followed 

by a 5°C min-1 and final 8 min heating at 280°C. Separated ion 

was detected MS detector at 250°C and recorded at two scans 

per sec with an m/z 50-600 scan range. One blank sample and 

One QC samples were injected at the start of an analytical 

sequence. The analysis order was randomly composed of 

samples. Data files after GC-MS analysis were treated with 

deconvolution process by AMDIS (Agilent, USA) with 

standard parameter (component width = 12; model Ion 0, 73, 

207, 281; resolution, sensitivity and shape requirements = 

medium). Retention time variation adjusted compare to FAME 

marker as a retention time standard in a process inside AMDIS 

program. Peak annotation results were exported text files 

matched metabolite in the DB. Peak annotation results were 

matched metabolite in the metabolomics Fiehn DB (Agilent 

G1676AA, USA) and exported to text files (Kind et al., 2009) 

 

Multivariate analysis 

 

For statistical analysis, each data was treated rescaling which 

divided by the square root of standard deviation (Pareto scaling; 

Van den Berg et al., 2006) of each sample variance. Statistical 

analysis of metabolic profiling with principal component 

analysis (PCA), and orthogonal projections to latent structures 

(OPLS) were analyzed by the SIMCA-P+ software (v12.0, 

Umetrics, Umea, Sweden; Ericksson et al., 2006).  

 

Conclusion 

 

Disease related chemicals in the plants are reported to be 

related to the phenolic compounds. In our experiment, some 

non-phenol compounds revealed different contents in the 

location of a disease symptom lesion. This result suggests that 

plant defensive mechanisms against a pathogen are related to 

total metabolic pathways. Whole metabolite profiling and 

multivariate statistical analysis are useful tools for an overview 

of total metabolic pathway processes in various biotic and 

abiotic stresses. Therefore, that can provide us critical clues for 

increasingly detailed studies.  
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