Cloning and characterization of MECS and HDS genes from *Rauvolfia verticillata*

Yue Zheng1, Min Chen2, Chunxian Yang1, Xingjia Ming3, Xiaojian Liu1, Xiaohong Lan1, Zhihua Liao1 *

1Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Laboratory of Natural Products and Metabolic Engineering, Chongqing Sweetpotato Research Center, School of Life Sciences, Southwest University, Chongqing 400715, People's Republic of China
2School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
3Chongqing Academy of Chinese Materia Medica, Chongqing 400065, People's Republic of China
4Tibet Agricultural and Animal Husbandry College, Nyingchi of Tibet 860000, People's Republic of China

*Corresponding author: zhliao@swu.edu.cn; zhihuailiao@163.com

Abstract

2-C-Methyl-D-erythritol-2,4-cyclodiphosphate synthase (MECS, EC: 4.6.1.12) and 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS, EC: 1.17.4.3) are two genes involved in the methylerythritol phosphate (MEP) pathway, which catalyze the fifth and the sixth enzymatic reaction of MEP pathway, respectively. The full-length cDNA of MECS and HDS were cloned and characterized from *Rauvolfia verticillata* for the first time. The new cDNAs were designated as *RvMECS* and *RvHDS* and submitted to GenBank® to be assigned with an accession number: EU034699 and HQ659759, respectively. The full-length cDNA of *RvMECS* was 1021-bp, containing a 717-bp open reading frame which encoded a polypeptide of 238 amino acids with a calculated molecular mass of 25.4 kDa and an isoelectric point of 8.32. The full-length cDNA of *RvHDS* was 2645-bp, containing a 2220-bp ORF encoding 740 amino acids with a calculated molecular mass of 82.0 kDa and an isoelectric point of 6.28. Bioinformatic analysis revealed that both *RvMECS* and *RvHDS* had extensive homology with *MECS* and *HDS* from other plant species and contained a conserved transit peptide for plastids. The phylogenetic analysis indicated that *RvMECS* and *RvHDS* belonged to plant *MECS* family and *HDS* family respectively. Quantitative PCR showed that expression level of *RvMECS* was highest in flowers followed by stems, roots, leaves and fruits. Whereas *RvHDS* expression level was highest in flowers followed by leaves, stems, fruits and roots. Expression profile analysis revealed that *RvMECS* expression was up-regulated by exogenous elicitors including methyl jasmonate and UV. However, expression of *RvHDS* was inhibited by elicitors. The present study will be helpful to understand more about the function of the two MEP genes at the level of molecular genetics.

Keywords: *Rauvolfia verticillata*; MECS gene; HDS gene; Cloning; MEP pathway; Expression profile.

Abbreviations: MECS- 2-C-Methyl-D-erythritol-2,4-cyclodiphosphate synthase; HDS- 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase; MEP- methylerythritol phosphate; MeJA- methyl jasmonate; ABA- abscisic acid; ASA- acetyl salicylic acid; 6-BA- 6-benzylaminopurine; NAA- α-Naphthalene acetic acid; TIAs- Terpenoid Indole Alkaloids.

Introduction

Rauvolfia verticillata is a rare medicinal shrub belonging to the family Apocynaceae, which is the main source of reserpine and ajmalicine in China (Li and Ting, 1962). Terpenoid Indole Alkaloids (TIAs) constitute one of the largest groups of natural products, providing many pharmacologically active compounds such as ajmalicine and reserpine. Especially, reserpine is of most interest because of its application in hypertension and cardiac disorders treatment (Anitha and Ranjitha, 2006). In pharmaceutical industries, reserpine is mainly extracted from the nature sources; however, the great demand cannot be met due to its low content. Even though the chemical synthesis of reserpine is possible, it is not feasible because of the high costs. Consequently, it is eager and necessary to find an alternative way to provide the source of pharmaceutical TIAs. Therefore, to map TIAs biosynthetic pathway in *R. verticillata* at the level of molecular genetics is a promising way to increase the level of molecular genetics is a promising way to increase pharmaceutical TIAs production. The common precursors of TIAs, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) are synthesized through the recently discovered plastidal methylerythritol 4-phosphate (MEP) pathway, which operates in eubacteria and plant plastids (Ramos-Valdivia et al., 1998). It has been confirmed that MEP pathway is essential for plastoidal isoprenoid biosynthesis in plants (Rodriguez-Concepcion, 2004). MEP pathway consists of seven enzymatic transformations originating form the conversion of pyruvate and glyceraldehyde 3-phophate (Figure 1). Two cDNAs involved in MEP pathway encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) (Liao et al., 2007) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR) have been cloned and characterized in the previous reports of our laboratory (Chen et al., 2010). MECS catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-
Table 1. The nucleotide sequences of oligonucleotide primers

<table>
<thead>
<tr>
<th>Primers</th>
<th>Orientation</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>dfmecs</td>
<td>Sense</td>
<td>GAGGATGCGAC(G/G)GCTCACCTCTG</td>
</tr>
<tr>
<td>drmecs</td>
<td>Antisense</td>
<td>C(C/T)CCAAGACTGTC(A/T/C)ACCTCTTCTAG</td>
</tr>
<tr>
<td>RvMECS3-1</td>
<td>Sense</td>
<td>GCTCACGACATAGGCTCA</td>
</tr>
<tr>
<td>RvMECS3-2</td>
<td>Sense</td>
<td>GGAAAGGGCACCTCCTTC</td>
</tr>
<tr>
<td>RvMECS5-1</td>
<td>Antisense</td>
<td>CTTGCCATCATCACAGCCTCA</td>
</tr>
<tr>
<td>RvMECS5-2</td>
<td>Antisense</td>
<td>CGCTCTAAGATATAGTATTTTC</td>
</tr>
<tr>
<td>ffmecs</td>
<td>Sense</td>
<td>ACCCGGGGAAAGGCAGAGAC</td>
</tr>
<tr>
<td>frrvmecs</td>
<td>Antisense</td>
<td>CGCTCTAAGATATAGTATTTTC</td>
</tr>
<tr>
<td>fexRvMECS</td>
<td>Antisense</td>
<td>AGAGACTGCGACTGCTTTC</td>
</tr>
<tr>
<td>dfhds</td>
<td>Sense</td>
<td>GATG(T/C)TCTGT(T/A)(C/T/C)(C/A)ATGTC(T/G/A)</td>
</tr>
<tr>
<td>dhds</td>
<td>Antisense</td>
<td>GTTCTCCTACTGCTCCTTC</td>
</tr>
<tr>
<td>RvHDS3-1</td>
<td>Sense</td>
<td>TTACTCAAAGGTGACTGAGT</td>
</tr>
<tr>
<td>RvHDS3-2</td>
<td>Sense</td>
<td>TATGTGTGACTGCTCCT</td>
</tr>
<tr>
<td>RvHDS5-1</td>
<td>Antisense</td>
<td>CCACGTACAGAAACAGCAGCCAAAGCTCC</td>
</tr>
<tr>
<td>RvHDS5-2</td>
<td>Antisense</td>
<td>GCCAGATCCTTAAAGCAGGATCCTCACCAC</td>
</tr>
<tr>
<td>ffrhds</td>
<td>Sense</td>
<td>CGATTTCTCTGTTCGAGAC</td>
</tr>
<tr>
<td>rfvhds</td>
<td>Antisense</td>
<td>GACTTTGTTGTCATGACTTCTC</td>
</tr>
<tr>
<td>fexRvHDS</td>
<td>Antisense</td>
<td>TGACACCAACACAGCACAAAGGAGT</td>
</tr>
<tr>
<td>rexRvHDS</td>
<td>Antisense</td>
<td>GCAACTCGCAAAGCCAGAGAC</td>
</tr>
<tr>
<td>I8SF</td>
<td>Sense</td>
<td>ATGATAACTCGACGGATAGC</td>
</tr>
<tr>
<td>I8SR</td>
<td>Sense</td>
<td>CTGGATGTTGTAGCCGGTT</td>
</tr>
<tr>
<td>UPM</td>
<td>Sense</td>
<td>CTAATACGACTCTCATTAGGTGATCAACTCAGAGAT</td>
</tr>
<tr>
<td>NUP</td>
<td>Sense</td>
<td>AAGACAGTAAAGATCAACAGCAGAGT</td>
</tr>
<tr>
<td>Oligo (dT)17 primer</td>
<td>Antisense</td>
<td>GGCCAGCGTTCGACTATAGTAC(T)</td>
</tr>
<tr>
<td>M13 primer M4</td>
<td>Sense</td>
<td>GTTTTTTCCGATGCAGCAC</td>
</tr>
</tbody>
</table>

phosphate (CDP-ME2P) to 2-C-methyl-D-erythritol 2,4-cyclophosphinate (MECDP), which is the fifth reaction of MEP pathway. The depletion experiment in both *Escherichia coli* and *Bacillus subtilis* demonstrated that MECS had an early and significant impact on cell wall biosynthesis and leads to cell death ultimately (Campbell and Brown, 2002). In larger genomic scale hybridization studies, failure to insert a transposon into the *ispF* gene (gene encoding MECS enzyme in *E. coli*) also suggested MECS was essential for growth or survival of *Haemophilus influenzae* and *Mycobacterium tuberculosis* (Buetow et al., 2007). *Arabidopsis* mutants *ispF*-1, which had a null mutation in the *ispF* gene were albino lethal. In addition, chloroplasts of *ispF*-1 were filled with vesicles rather than thylakoids (Hsieh and Goodman, 2006). The previous experimental results showed that MECS participated in the control of isopenoid accumulation in plants. It also was demonstrated that MECS gene expression correlated with monoterpene indole alkaloid (MIA) accumulation (vesau et al., 2000). Furthermore, the co-localization of MECS with a key enzyme geraniol 10-hydroxylase (GI10H) indicated its indispensable role in the biosynthesis of TIAS (Burlat et al., 2004). HDS catalyzes the conversion of 2-C-methyl-D-erythritol-2,4-cyclophosphinate into 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate, which is the penultimate enzymatic step of MEP pathway. The previous study has demonstrated that HDS (also named GCPE) was essentially involved in the MEP pathway in *E. coli* (Campos et al., 2001). A defective HDS mutant of *Arabidopsis* clb4 showed the arrested chloroplast development at the proplastid stage which suggested that HDS involved in the early chloroplast development in *Arabidopsis* (Gutiérrez-Nava et al., 2004). Even though HDSs from plant have not been fully characterized, previous researches indicated that HDS participated in controlling metabolic flux (Rodríguez-Concepción et al., 2003) and defended mechanism of plants (Gil et al., 2005). All of above reports suggested that both MECS and HDS were indispensable for organisms and could serve as potential target enzymes for metabolic engineering of TIAS biosynthesis. Unfortunately, until now there have been no reports on the cloning of the MECS gene and HDS gene from *R. verticillata*. To our knowledge, some stimuli such as MeJA, ABA and UV have positive effect on accumulation of plant secondary metabolites including TIAS. Thus, it is worthwhile to investigate the expression levels of relevant genes in TIAS biosynthesis responding to different elicitors.
Plant materials and treatments

R. verticillata plant was cultivated in the plant garden of Southwest University (Chongqing, China). The roots, stems, leaves, fruits and flowers of *R. verticillata* were collected in September. After collection, the materials were immediately immersed into liquid nitrogen for total RNA isolation later. Total RNAs were isolated using the RNAplant reagent (Tiangen, China) according to the manufacturer’s instructions and stored in -80 °C. The cell cultures of *R. verticillata* initiated from leaves were maintained on solid MS medium supplemented with 0.5 mg•L⁻¹ 6-BA and 5 mg•L⁻¹ NAA at 25 °C in darkness and sub-cultured every 4 weeks. In this study, the single-strand cDNA mixtures were used as templates for PCR amplification of the conserved region of *MECS* and *HDS* from *R. verticillata*. Two pairs of degenerate primers, dfmecs and dfmecs, dhds and dhds (Table 1) were designed according to the conserved sequences of other plant *MECS* and *HDS* genes for amplifying the core cDNA fragment of *RvMECS* and *RvHDS* by standard gradient PCR amplification (from 55 to 68 °C) on BioRad My Cycler (USA). The core fragment of each gene was amplified and subcloned into pMD19-T vector (Takara, Japan) then transformed into *E. coli* strain DH5α for sequencing. The RACE-Ready cDNA for 3'-RACE was acquired by the method supplied by RNA PCR Kit (AMV) Ver.3.0 (TaKaRa). For the first PCR amplification of 3'-RACE cDNA, RvMECS3-1 (RvHDS3-1) and M13 Primer M4 were used as the primers (Table 1) and the 3'-RACE-ready cDNAs were used as templates. Then the 50-fold diluted first PCR products were used as the templates for the nested amplification of 3'-RACE, with RvMECS3-2 (RvHDS3-2) and M13 Primer M4 as the primers (Table 1). The PCR was conducted as the following procedures: 2 min at 94 °C, followed by 32 cycles of 30 sec at 94 °C, 30 sec at 52 °C and 1 min at 72 °C, then 8 min of extension at 72 °C. 5'-RACE-ready cDNA samples of *R. verticillata* was prepared using SMARTTM RACE cDNA Amplification Kit (Clontech, USA) according to the manufacturer’s protocol and used as templates for 5'-RACE. Advantage²™ 2 PCR Kit (Clontech, USA) was used for amplifying 5'-ends of *RvMECS* and *RvHDS* cDNAs. For the first PCR amplification of 5' RACE, RvMECS1-1 (RvHDS1-1) and Universal Primer A Mix (UPM, provided by Clontech) were used as the primers (Table 1), using 5'-RACE-ready cDNAs as templates. For the nested PCR amplification of 5' RACE, RvMECS5-2 (RvHDS5-2) and Nested Universal Primer A (NUP, provided by Clontech) were used as the primers (Table 1), and the 50-fold diluted products of the first PCR amplification were used as templates. PCR procedures of 5'-RACE amplifications were carried out under the following conditions: 25 cycles of amplification (30 sec at 94 °C, 30 sec at 68 °C, 3 min at 72 °C). By 3'-RACE and 5'-RACE, both ends of two cDNAs were obtained respectively and confirmed by sequencing. Contig Express (Vector NTI Suite 8.0) was used for assembling the sequences of 3' RACE, 5' RACE and the core fragment, then the full-length cDNA sequence of *RvMECS* (RvHDS) were deduced, according to which two gene-specific primers: flrmecs and flrvhds (flrmecs and flrvhds) (Table 1) were designed to amplify the full-length of *RvMECS* (RvHDS) from 5'-RACE-ready cDNA samples.

Comparative and Bioinformatic Analysis

Comparative and bioinformatic analysis of *RvMECS* (RvHDS) were carried out online at the websites (http://www.ncbi.nlm.nih.gov and http://www.expasy.org). The sequence comparison was conducted through database search using BLAST program (Altschul et al., 1997). The subcellular location of *RvMECS* (RvHDS) was predicted by Target P (Nielsen et al., 2000). The multiple alignments of *RvMECS* (RvHDS) and MECSs (HDSs) from other species were aligned with CLUSTAL X (Thompson et al., 1997). A phylogenetic tree of each gene was constructed using MEGA 3.0 (Kumar et al., 2004) from CLUSTAL X alignments, based on the neighbor-joining method (Saitou and Nei, 1987).

Cloning of the full-length cDNA of *RvMECS* and *RvHDS*

Single-strand cDNAs were synthesized from 5 µg of total RNA with an oligo (dT) 17 primer (Table 1) and reversely transcribed according to the manufacturer’s protocol (PowerScriptTM, Clontech, USA). After RNase H treatment, the single-strand cDNA mixtures were used as templates for PCR amplification of the conserved region of *MECS* and *HDS* from *R. verticillata*. Two pairs of degenerate primers, dfmecs and dfmecs, dhds and dhds (Table 1) were designed according to the conserved sequences of other plant *MECS* and *HDS* genes for amplifying the core cDNA fragment of *RvMECS* and *RvHDS* by standard gradient PCR amplification (from 55 to 68 °C) on BioRad My Cycler (USA). The core fragment of each gene was amplified and subcloned into pMD19-T vector (Takara, Japan) then transformed into *E. coli* strain DH5α for sequencing. The RACE-Ready cDNA for 3'-RACE was acquired by the method supplied by RNA PCR Kit (AMV) Ver.3.0 (TaKaRa). For the first PCR amplification of 3'-RACE cDNA, RvMECS3-1 (RvHDS3-1) and M13 Primer M4 were used as the primers (Table 1) and the 3'-RACE-ready cDNAs were used as templates. Then the 50-fold diluted first PCR products were used as the templates for the nested amplification of 3'-RACE, with RvMECS3-2 (RvHDS3-2) and M13 Primer M4 as the primers (Table 1). The PCR was conducted as the following procedures: 2 min at 94 °C, followed by 32 cycles of 30 sec at 94 °C, 30 sec at 52 °C and 1 min at 72 °C, then 8 min of extension at 72 °C. 5'-RACE-ready cDNA samples of *R. verticillata* was prepared using SMARTTM RACE cDNA Amplification Kit (Clontech, USA) according to the manufacturer’s protocol and used as templates for 5'-RACE. Advantage²™ 2 PCR Kit (Clontech, USA) was used for amplifying 5'-ends of *RvMECS* and *RvHDS* cDNAs. For the first PCR amplification of 5' RACE, RvMECS1-1 (RvHDS1-1) and Universal Primer A Mix (UPM, provided by Clontech) were used as the primers (Table 1), using 5'-RACE-ready cDNAs as templates. For the nested PCR amplification of 5' RACE, RvMECS5-2 (RvHDS5-2) and Nested Universal Primer A (NUP, provided by Clontech) were used as the primers (Table 1), and the 50-fold diluted products of the first PCR amplification were used as templates. PCR procedures of 5'-RACE amplifications were carried out under the following conditions: 25 cycles of amplification (30 sec at 94 °C, 30 sec at 68 °C, 3 min at 72 °C). By 3'-RACE and 5'-RACE, both ends of two cDNAs were obtained respectively and confirmed by sequencing. Contig Express (Vector NTI Suite 8.0) was used for assembling the sequences of 3' RACE, 5' RACE and the core fragment, then the full-length cDNA sequence of *RvMECS* (RvHDS) were deduced, according to which two gene-specific primers: flrmecs and flrvhds (flrmecs and flrvhds) (Table 1) were designed to amplify the full-length of *RvMECS* (RvHDS) from 5'-RACE-ready cDNA samples.

Comparative and Bioinformatic Analysis

Comparative and bioinformatic analysis of *RvMECS* (RvHDS) were carried out online at the websites (http://www.ncbi.nlm.nih.gov and http://www.expasy.org). The sequence comparison was conducted through database search using BLAST program (Altschul et al., 1997). The subcellular location of *RvMECS* (RvHDS) was predicted by Target P (Nielsen et al., 2000). The multiple alignments of *RvMECS* (RvHDS) and MECSs (HDSs) from other species were aligned with CLUSTAL X (Thompson et al., 1997). A phylogenetic tree of each gene was constructed using MEGA 3.0 (Kumar et al., 2004) from CLUSTAL X alignments, based on the neighbor-joining method (Saitou and Nei, 1987).
Fig 2A. The full-length cDNA sequence and the deduced amino acid sequence of *RvMECS*. The coding sequence and its deduced amino acid sequence were shown in capital letters, and the UTR were shown in small letters. The stop codon (TAG) was marked with an aster, the plastidial transit peptide was underlined.

Fig 2B. The full-length cDNA sequence and the deduced amino acid sequence of *RvHDS*. The coding sequence and its deduced amino acid sequence were shown in capital letters, and the UTR were shown in small letters. The stop codon (TAG) was marked with an aster, the plastidial transit peptide was underlined.
Expression Profile Analysis of RvMECS and RvHDS

Quantitative RT-PCR was carried out to investigate the expression profile of RvMECS (RvHDS) in different tissues including roots, stems, leaves, flowers and fruits of *R. verticillata*. Changes of expression pattern under different elicitor treatments including 100 μM MeJA, 100 mg L⁻¹ ASA, 50 μM ABA and UV were also investigated. cDNA of each sample was synthesized using AMV Reverse Transcriptase (Takara, Japan) according to the manufacturer’s instructions. Quantitative PCR of each gene was conducted with two primers: fexRvMECS and rdxRvMECS (fexRvHDS and rdxRvHDS) (Table 1) specific to the coding sequence of RvMECS (RvHDS) using SYBR Premix ExTaq (Takara, Japan). Amplifications were performed under the following conditions: 94 °C for 2 min, 40 cycles of denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s and followed by extension at 68 °C for 20 s. Meanwhile, the house-keeping gene 18S rRNA gene was used as the reference gene.

Results and discussion

Cloning of the full-length cDNAs of RvMECS and RvHDS

Based on the conserved fragment of other plant MECSs (HDSs), two degenerate primers dfmecs and drmecs (dfhds and dhds) were designed for gradient PCR amplification of the core cDNA fragment of MECS (HDS) from *R. verticillata*. An approximate 400-bp product of MECS and a 820-bp product of HDS were respectively obtained and sequenced. The BLAST search revealed that core fragment of RvMECS (RvHDS) had high homologous with MECS (HDS) genes from plant species. Especially, the similarity was extremely high when compared to MECS (HDS) from *Catharanthus roseus*. These results strongly suggested that the core fragment of RvMECS (RvHDS) had been obtained. By nested 3’-RACE and 5’-RACE, the 490 bp 3’-end and 660 bp 5’-end of RvMECS (the 572 bp 3’-end and 1493 bp 5’-end of RvHDS) were respectively obtained. By aligning and assembling ana-
Fig 4A. Phylogenetic trees of MECSs from different organisms constructed by neighbor-joining method on MEGA 3. Bacteria-
related MECSs were marked with □ gymnosperms-derived MECSs were marked with △, argiophorins-derived MECSs were marked with ■. The GenBank Accession Numbers: Catharanthus roseus AAF63155.1; Stevia rebaudiana ABG23395.1; Cephalotaxus fortunei ABD73009.1; Taxus x media ABB88956.1; Arabidopsis thaliana NP_850971.1; Hevea brasiliensis AAS94122.1; Ralstonia solanacearum YP_003745559.1; Burkholderia thailandensis E264 YP_442614.1; Geobacter uraniumreducens Ri4 YP_001232880.1; Bacillus sp. ZP_01725567.1; Escherichia coli CAQ33078.1.

lysis carried on Contig Express (Vector NTI Suite 8.0), the 1021-bp full-length cDNA sequence of RvMECS (the 2645-
bp full length cDNA sequence of RvHDS) was deduced. Subsequently, the physical full-length RvMECS (RvHDS)
cDNA was amplified and confirmed by sequencing (Figure 2). The ORF Finder program analysis on NCBI showed that the RvMECS had a 121-bp 5′untranslated region (UTR), a 196-bp 3′UTR and a 717-bp coding sequence which encoded a protein of 238-amino acid with a calculated molecular mass of 25.4 kDa and an isoelectric point of 8.32. RvHDS was predicted to have a 153-bp 5′UTR, a 272-bp 3′UTR and a 2220-bp coding sequence which encoded a protein of 740-amino acid with a calculated molecular mass of 82.0 kDa and an isoelectric point of 6.28. All above dates showed that a new MECS gene and a new HDS gene involved in upstream pathway of TIAs biosynthesis have been cloned from R. verticillata.

Comparative and bioinformatic analysis of RvMECS and RvHDS

BLAST research of amino acid sequences between RvMECS (RvHDS) and other MECSs (HDSs) were respectively conducted (Figure 3). The similarities between RvMECS and other MECSs were: C. roseus (90.4% identities), Stevia rebaudiana (73.9% identities), Ginkgo biloba (63.2% identities) and Arabidopsis thaliana (63.2% identities). It indicated that MECSs from different plant species varied a lot in sequence.
Stevia rebaudiana
Artemisia annua
Hevea brasiliensis
Oryza sativa
Arabidopsis thaliana
Solanum lycopersicum
Catharanthus roseus
Rauvolfia verticillata
Ginkgo biloba
Thermosynechococcus elongatus BP
Acaryochloris marina MBIC11017
Microcystis aeruginosa PCC 7806
Bacillus amyloliquefaciens FZB 42
Rhodobacter sphaeroides KD 131
Pseudoalteromonas atlantica T6c
Escherichia coli BL21 DE3
Psychromonas ingrahamii 37

Fig 4B. Phylogenetic trees of HDSs from different organisms constructed by neighbor-joining method on MEGA 3. Bacteria-derived HDSs were marked with ○, algae-derived HDSs were marked with □, plants-derived HDSs were marked with ■. The GenBank Accession Numbers: Catharanthus roseus AAO24774.1; Stevia rebaudiana ABG75916.2; Ginkgo biloba ABB78087.1; Artemisia annua ACT64770.1; Arabidopsis thaliana AAO15446.1; Solanum lycopersicum AAO15447.1; Hevea brasiliensis BAF98296.1; Oryza sativa EEE57327.1; Escherichia coli CAQ32886.1; Microcystis aeruginosa CAO90324.1; Bacillus amyloliquefaciens ABS74698.1; Psychromonas ingrahamii ABM03004.1; Thermosynechococcus elongatus NP_681786.1; Pseudoalteromonas atlantica YP_662686.1; Acaryochloris marina YP_001514549.1.

Fig 5. Expression profile of RvMECS and RvHDS under induction by elicitors including UV, 100 µM MeJA, 50 µM ABA and 100 mg·L⁻¹ ASA. Total RNA samples were isolated from callus treated with UV, MeJA, ABA, ASA and without treatment (as the control), respectively, and analyzed by one-step RT-PCR.

in N-amino acids, which was non-catalytic region. However, amino acid sequences of plant MECSs were very consensus in catalytic region. Active site residues D8 (asparticacid), H10 (histidine), H42 (Zn²⁺ ligand) and E135 (glutamic acid, the binding site of Mg²⁺ and Mn²⁺) of E. coli were also present in RvMECS and MECSs from other plant species. The BLAST result of amino acid sequence of RvHDS was: C. roseus (94.7% identities), Solanum lycopersicum (89.1% identities), A. thaliana (84.6% identities), G. biloba (82.8% identities). Target P was used for predication of sub-locations of RvMECS and RvHDS. RvMECS protein was predicted to be localized in plastid with a 57-amino acid plastid targeting sequence at its N-terminal end. RvHDS protein was also predicted to obesi a 61-amino acid signaling target sequence. The predications were consistent with the fact that MECS and HDS were two genes involved in MEP pathway which located in plastid (Lichtenthaler et al., 1997). The previous study of MECS and HDS from G. biloba demonstrated the localization of MECS and HDS was plastid (Kim et al., 2006; Kim and Kim, 2010). Additionally, secologanin, the direct precursor of TIAs biosynthesis was also located in plastid (Ynazaki et al., 2003). Using MEGA 3.0 based on CLUSTAL X alignments, a phylogenetic tree of MECSs (HDSs) was respectively constructed from different organisms (Figure 4). The result demonstrated that MECSs could be divided into three groups, those of angiosperm, gymnosperm and bacteria. RvMECS was shown to belong to angiosperm category. HDSs were shown to derive from an ancestor gene and evolved into three groups including plants, algae and bacteria HDS group. RvHDS had higher identity with plant HDSs than bacterium and algae HDSs. All the analysis results strongly suggested that RvMECS and RvHDS
100 µM MeJA, 100 mg•L-1 ASA, 50 µM ABA and UV. The expression changes of two genes upon treatments including (Figure 5). The expression level of in all tissues, with highest amount in flowers followed by , followed by leaves, stems, fruits and roots (Figure 5). To investigate the effects of elicitor treatments on expression levels RvMECS and RvHDS, quantitative PCR was carried out to monitor the expression changes of two genes upon treatments including 100 µM MeJA, 100 mg•L-1 ASA, 50 µM ABA and UV. The result showed that the expression level of RvMECS was both strongly increased by MeJA and UV treatments, among which the highest transcript level of RvMECS was found induced by MeJA treatment. However, ABA and ASA showed had no positive effect on RvMECS expression (Figure 6). The result suggested that RvMECS was a highly-regulated gene for basic physiological and biochemical processes in R. verticillata. Different from RvMECS, RvHDS could not be up-regulated by four elicitors, insteadly, the expression of RvHDS was greatly inhibited by elicitors including ABA, ASA, MeJA and UV (Figure 6). The result indicated that the regulation mechanism of RvHDS was different from that of RvMECS.

Conclusions

MECS and HDS catalyze the fifth and the sixth reaction of the MEP pathway which produces precursors for TIA biosynthesis (Altincicek et al., 2002), then they are deemed as two ideal targets for metabolic engineering of the isoprenoid biosynthetic pathway. In the present study, we have successfully isolated and characterized the RvMECS cDNA and RvHDS cdNA from R. verticillata for the first time. Our present study also indicated that MeJA and UV could up-regulate the expression of RvMECS. However, elicitors including UV, MeJA, ABA and ASA had no positive effects on the expression profile of RvHDS. The results provide direct evidence that RvMECS is an elicitor-responsive gene and can be effectively up-regulated at least at the transcription level by certain kinds of elicitors. The present results imply the possibility of improving TIAS production through the up-regulation of enzymatic genes after induction of elicitors as well. Cloning and characterization analysis of RvMECS and RvHDS will facilitate the understanding of the biosynthesis of TIA including reserpine and ajmalicine. It has been demonstrated in previous reports that overexpressing key enzymatic genes is a promising strategy to enhance the accumulation of medicinal alkaloids (Yang et al., 2011). Based on the present research, plant expression vector containing the RvMECS and RvHDS can be constructed. In combination with the establishment of genetic transformation system, potential roles of RvMECS and RvHDS in improving TIA production by genetic engineering can be tested in the near future.

Acknowledgements

This research was financially supported by the China National 863 High-Tech program (Project No. 2010AA1-00503) and NSFC project (31070266).

References

