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Abstract 

 

Fruits are highly consumed products, especially due to their colorful appearance, sweet taste and healthy appeal. Some of these 

qualitative aspects such as size, color, acidity, flavor, sweetness and juiciness, which have great influence upon consumer, are 

dependent of specific physiological processes that occur during ripening. After a certain point, new physiological changes take place, 

which result in unsuitable characteristics for consumption and large losses for both farmers and consumers, the understanding of 

ripening regulation is of crucial economic importance. The new technologies that are currently becoming available are contributing 

tremendously for a better understanding of fruit growth and ripening. In this report, we focus on discussing the knowledge obtained 

mainly through the study of ripening mutants. We also point some future directions taking into account the impact of new 

technologies on the understanding of postharvest biology, also showing that phylogenetic analysis of ripening related loci from 

different species can reveal interesting differences between climacteric and non-climacteric fruits, helping to understand and to take 

control over ripening regulation. 
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Introduction 

 

Fruits are highly perishable products due to their cellular 

architecture and intense metabolic activity. Deterioration 

processes have caused farmers to lose up to 40% of the value 

of their fruits and vegetables before they reach the consumer 

(Kitinoja et al., 2011). Knowing that the application of 

appropriate technologies to maintain quality depends on the 

understanding of fruit structure, physiology and metabolic 

transformations (Pech et al., 2013), studies have been 

conducted in order to better understand floral organ and fruit 

development (Bao et al., 2010; Seymour et al., 2013), the role 

of hormones and related genes in maturation and ripening 

(Alexander and Grierson, 2002; Cara and Giovannoni, 2008; 

Kumar et al., 2014), as well as physiological disorders 

(Pegoraro et al., 2010) and epigenetic alterations associated 

with ripening (Manning et al., 2006; Zhong et al., 2013). 

Molecular biology has contributed significantly to the 

elucidation of how fruit growth and development occurs 

(Gapper et al., 2013; McAtee et al., 2013; Osorio et al., 2013; 

Pech et al., 2013; Seymour et al., 2013; Gapper et al., 2014; 

Kumar et al., 2014). In this report, we focus on summarizing 

some of the most important topics in postharvest molecular 

biology, pointing future trends in this field. 

From ovule fecundation to physiological maturation 

 

Fruit development begins shortly after fertilization of the 

female gamete (egg) by the male gamete (pollen). From this 

point to maturation several genes are involved and among 

these genes are the transcription factors (TFs) which have 

great importance in modulating the expression of several 

genes and metabolic processes (O’Neill 1997; Giovannoni, 

2001). Different steps take place between the onset of fruit 

development and its senescence (Figure 1). In the early stages 

of development, tissue growth is a phenomenon that occurs 

mainly by cell division. After this period growth occurs due 

to cell enlargement, when vacuoles appear. This expansion 

extends into maturation, a stage that leads the fruit to be 

capable of normal ripening of the plant. An upsurge in 

respiratory activity may be observed in some fruits at the end 

of this phase, the climacteric. The climacteric pattern is a 

phenomenon in which ethylene production and cellular 

respiration increase, with profound impacts on ripening. This 

has been used to distinguishing fruits, being divided in 

climacteric and non-climacteric, as discussed later. The 

climacteric phase extends to part of senescence and fruit 
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decay. Fruit can also be classified as dry or fleshy. Fleshy are 

indehiscent fruits, while dry can be both dehiscent and 

indehiscent. The dehiscent fruits comprise mostly nuts, in 

which the dispersion of seeds occurs through fruit opening in 

the dehiscence zone. As an example of this kind of fruits we 

have Arabidopsis thaliana (L.) Heynh, which is the main 

model for studies in plant and fruit development (Roeder and 

Yanofsky, 2006; Koornneef and Meinke, 2010). Indehiscent 

fruits, conversely, do not form the dehiscence zone for seed 

dispersion and are usually characterized by their fleshiness 

and complex changes in biochemical composition, which 

comprise the late stage of cell expansion until complete 

maturation. After reaching the mature stage, these fruits 

attract herbivores, which are then in charge of seed 

dispersion. Tomato (Solanun lycopersicum L.) is a classical 

example of fleshy indehiscent fruit and the main model of 

climacteric maturation (Klee and Giovannoni, 2011; Pesaresi 

et al., 2014). Here however, to better describe known 

pathways involved in fruit development, Arabidopsis will be 

used most of the time. Plant hormones play key roles in 

tissue differentiation, becoming the target of many studies. 

Gibberellic acid (GA) has been reported as an important 

player in the events that occur just after fertilization, as it has 

the ability to promote a cascade of biochemical signals both 

in ovule and valves, playing a major role in fruit growth (van 

Huizen et al., 1995; Serrani et al., 2008; Dorcey et al., 2009; 

Ozga et al., 2009). This GA growth promotion occurs 

through the degradation of DELLA proteins (Fuentes et al., 

2012). It is also known that in della mutants, fruits develop 

by parthenocarpy, another evidence of their role on the 

regulation of fruit growth (Dorcey et al., 2009). Another 

group of genes, the MADS-box family, are key 

transcriptional regulators for a variety of developmental 

processes. TFs containing MADS domains are present in the 

majority of eukaryotic organisms, but the number of MADS-

box genes is much higher in land plants than in any other 

group of eukaryotes (Dreni and Kater, 2013). The 

FRUITFULL (FUL) MADS-box gene, for example, plays an 

important role in mediating the growth and differentiation of 

valves after fertilization in Arabidopsis thaliana and their 

homologues in tomato (S. lycopersicum) have recently been 

linked to fruit ripening (Gu et al., 1998; Shima et al., 2013; 

Fujisawa et al., 2014). SHATTERPROOF (SHP) genes have 

been reported as having a primary role in the stage of 

ripening and in dehiscence zone formation, while 

SEEDSTICK (STK) has been related to fruit development, 

formation of the cord, and seed dispersal in the abscission 

process (Pinyopich et al., 2003). Recently, a better 

understanding of the role of TFs such as the basic helix-loop-

helix (bHLH) proteins INDEHISCENT (IND) and 

ALCATRAZ (ALC) on gibberellin synthesis and signaling in 

fruit opening has been achieved (Arnaud et al., 2010). A 

relation between AtNAP, a NAC family TF gene, and fruit 

senescence in Arabidopsis has been established (Kou et al., 

2012) and new information on how the zinc-finger 

transcription factor NO TRANSMITTING TRACT (NTT) acts 

in replum development has been reported (Marsch-Martínez 

et al., 2014). Regarding color development, anthocyanin 

biosynthesis in leaves and fruits are also classical molecular 

events highly regulated at the transcriptional level. bHLH 

proteins and WD-repeat families of TFs are two important 

regulators involved in anthocyanin biosynthesis 

(Sompornpailin et al., 2002; Butelli et al., 2008). The 

overexpression of these TFs increased the hydrophilic 

antioxidant capacity and resulted in fruit with purple 

coloration in skin and flesh. In addition, this strategy 

increased fruit functional properties (Martin et al., 2013) and 

doubled its shelf-life, despite the increase in ethylene 

biosynthesis (Bassolino et al., 2013). 

 

The ripening process 

 

What we call maturation occurs before the complete 

development of the fruit which after harvested should survive 

from its own accumulated substrates. This is an intermediate 

step between the end of development and the beginning of 

senescence, a delayable but irreversible event. After 

fertilization, the fruit goes through a period of high cell 

division activity, followed by a rapid period of cell 

enlargement. During the final stages of growth and 

development, the fruit reaches full size and is physiologically 

mature. The ripening stage is the final stage of the maturation 

process when the fruit changes taste, texture, color of flesh, 

and flavor, getting ready to be consumed. Therefore, the 

maturation stage includes two steps: physiological 

maturation, when maximum seed vigor is reached, and 

ripening, when eating quality is the best (Biale, 1964; 

Seymour et al., 2013). The discovery of climacteric patterns 

began in 1925, when Kidd and West demonstrated that apple 

(Malus × domestica Borkh.), at a certain time, increases 

respiration and that it was associated with maturation and 

ripening. Later it was discovered that some, but not all fruits 

undergo the same increase in respiration. These differences in 

respiration led to the classification of fruits as climacteric and 

non-climacteric (Biale and Young, 1981). It is known today 

that climacteric fruits are those that can ripen not only on the 

plant but even after harvest, when harvested at pre-

climacteric stage, as tomato (S. lycopersicum) and banana 

(Musa spp.), and reach senescence sooner (Fernández-

Trujillo et al., 2007; Fernández-Trujillo, 2008). Non-

climacteric fruits such as strawberries (Fragaria spp.) and 

grapes (Vitis vinifera L.), only complete maturation when 

attached to the plant, since they do not have increased 

ethylene production after harvest (Biale, 1964; Given et al., 

1988; Chervin et al., 2004). The non-climacteric fruits do not 

develop the dogmatic climacteric patterns, including 

increasing of respiration, ethylene biosyntheses and 

autocatalytic ethylene response, but showed some typical 

responses to ethylene (degreening, softening, and others). 

Interestingly, there are also species that have both climacteric 

and non-climacteric varieties (Obando-Ulloa et al., 2009), 

being good models to study the genetic differences 

responsible for the different types of ripening. Ethylene was 

only identified and began to be studied after its effects on 

plants had already been noted (Abeles et al., 1992; Lin et al., 

2009). Since then studies on fruit ripening usually focus on 

this compound, but what is it exactly?  

 

Ethylene and its mighty power 

 

Ethylene (C2H4), the simplest existing alkene (unsaturated 

hydrocarbon, with formula CnH2n), is a plant hormone with 

important roles in ripening and other processes. Today the 

pathway of ethylene biosynthesis is well defined, starting 

with the conversion of methionine to S-adenosylmethionine 

(SAM), which is subsequently transformed by ACC synthase 

(ACS), in 1-aminocyclopropane-1-carboxylic acid (ACC) 

and then converted by ACC oxidase (ACO) in ethylene 

(Kende, 1989). Ethylene is one major endogenous factor that 

stimulates the respiratory activity and, consequently, 

anticipates ripening and senescence of tissues, triggering 

climacteric reactions. More recently a compound called 1-

methylcyclopropene (MCP) proved to be a powerful 

antagonist of ethylene action and is now being used as a  

http://www.plantcell.org/content/24/3/1242.full#ref-6
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   Table 1. Fruit genomes that have been sequenced to date. 

Common name Scientific name Reference/year 

Grape Vitis vinifera L. (Jaillon et al., 2007; Velasco et al., 2007) 

Papaya Carica papaya L. (Ming et al., 2008) 

Cucumber Cucumis sativus L. (Huang et al., 2009; Wóycicki et al., 2011) 

Apple Malus x domestica Borkh. (Velasco et al., 2010) 

Strawberry Fragaria vesca L. (Shulaev et al., 2011) 

Date palm Phoenix dactylifera L. (Al-Dous et al., 2011) 

Tomato Solanum lycopersicum L. (Tomato Genome Consortium, 2012) 

Melon Cucumis melo L. (Garcia-Mas et al., 2012) 

Banana Musa acuminata L. (D’Hont et al., 2012) 

Chinese plum Prunus mume Sieb & Zucc. (Zhang et al., 2012) 

Pear Pyrus bretschneideri Rehd and Pyrus communis L. (Wu et al., 2013; Chagné et al., 2014) 

Watermelon Citrullus lanatus L. (Guo et al., 2013) 

Peach Prunus persica (L.) Batsch (International Peach Genome Initiative, 2013) 

Kiwifruit Actinidia chinensis L. (Huang et al., 2013) 

Pepper Capsicum annuum L. (Kim et al., 2014; Qin et al., 2014) 

 

 
Fig 1. Steps between the onset of fruit development and final senescence. 

 

 

research tool in order to reach a better understanding of 

ethylene-regulated processes and for extension of the shelf 

life of fruits and vegetables (Blankenship and Dole, 2003). 

This understanding of the mode of action of ethylene has 

been advancing in recent years also trough studies dedicated 

to the identification of TFs capable of binding to the 

promoter region of genes related to ethylene biosynthesis and 

action, like the transcriptional regulators belonging to the 

APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR 

(ERF) type (Klee and Giovannoni, 2011; Pech et al., 2012; 

Grierson, 2013; Pech et al., 2013). Other important genes 

induced by ethylene in fruit ripening are: Ethylene receptors, 

SlEB1 and SlEB2, Constitutive Triple Response1 (CTR1); 

ER49 (translation elongation factor Ts EF-Ts); 

Chlorophyllase, Phytoene synthase 1; Alcohol acyl-

transferase 1,2,3,4, Lipoxygenase; Cellulase, Expansin, β-

galactosidase, Endo-(1,4)-β-mannanase, Pectin 

methylesterase, Polygalacturonase, Rab GTPase, Xyloglucan 

endotransglucosidase/hydrolases, β-D-Xylosidase. More 

information about these genes can be found in literature and 

new technologies are being applied in order to discover more 

important loci involved in ethylene response and fruit 

ripening (Alexander and Grierson, 2002; Cara and 

Giovannoni, 2008; Osorio and Fernie, 2013; Pech et al., 

2008; Pech et al., 2012; Grierson, 2013; Pech et al., 2013). 

 

RipenOMICs 

 

The new high throughput technologies for genome analysis 

are now deeply impacting plant research. Today genomics, 

methylomics, transcriptomics, proteomics, interactomics, 

metabolomics and phenomics as well as integrative analyses 

(Figure 2) are helping in the understanding of plant 

physiology not only during the stages comprised between 

early development and the reproductive stage, but also during 

fruit maturation and ripening (Mochida and Shinozaki, 2011; 

Fujisawa et al., 2012; Osorio et al., 2013; Ruiz-May et al., 

2013; Zhong et al., 2013; Gapper et al., 2014). 

Transcriptome-wide analyses are now showing that the 

number of differentially expressed genes during ripening 

stages varies between species. In the Chinese jujube 

(Ziziphus jujuba Mill.) a total of 154 differentially expressed 

genes were identified when comparing fruits at the half-red 

and at the complete red stage (Lin et al., 2013). Nonetheless, 

an integrative analysis of the transcriptome and proteome 

comparing a spontaneous late-ripening mutant orange 

(‘Fengwan’ orange, Citrus sinensis L. Osbeck) and its wild 

type (‘Fengjie 72-1’) showed that at the transcript level 

(RNA sequencing - RNAseq), 628 genes had a 2-fold or 

more expression difference between the mutant and wild 

type, while at the protein level, 130 proteins differed by 1.5-

fold or more in their relative abundance (Wu et al., 2014). 

High throughput technologies and Digital Gene Expression 

(DGE) used for transcriptome profiling are also proving to be 

a rapid and cost effective method for de novo transcriptome 

analysis of non model plant species that lack of prior genome 

annotation, such as Chinese white pear (Pyrus bretschneideri 

Rehd.), where a total of 90,227 unigenes were assembled and 

62,077 unigenes were annotated through this method (Xie et 

al., 2013). Furthermore, many fruit genomes are now 

becoming available for wide-range analysis (Table 1) and 

may show interesting evolutionary changes in gene 

sequences over the years. Phylogenetic approaches, which 

have also become more robust with the advance of 

computing power, which enabled the use of Bayesian 

statistical analyses, can contribute greatly to a better 

understanding on the differences between climacteric and 

non-climacteric fruits. These are powerful new weapons in 

the war against fruit senescence and its consequent losses, but 

which should be our first targets for further studies  on  
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Fig 2. Systems biology and omics tools in the understanding of the fruit ripening process. 

 

 
Fig 3. Network of early ripening regulators. 

 

 

ripening and related events? Probably the earliest ripening 

regulators. 

 

Where should we attack first? - The role of transcription 

factors 

 

Transcription factors are key regulators of many cellular 

pathways. The study of ripening mutants showed that 

different TF loci such as ripening inhibitor (rin) nonripening 

(nor), colorless non-ripening (cnr) and many others (Figure 

3) are involved in this event (Martel et al., 2011; Osorio et 

al., 2013). In this section we will focus on the role of these 

three TFs and some genes related to them. Fruits obtained 

from rin plants fail to ripen and display enlarged sepals as 

well as loss of inflorescence determinacy. Further studies of 

rin locus revealed a MADS-box gene which was called at 

first as LeMADS-RIN (Vrebalov et al., 2002). It is now 

known that this gene is actually a member of the MADS-box 

family from the SEPALLATA4 (SEP4)  class which was 

partially deleted. It is also known that it is one of the earliest-

acting ripening regulators for ethylene-dependent and 

ethylene-independent pathways. The identification of novel  
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Fig 4. Protein based phylogenetic analysis of the loci of rin, nor and Cnr in Arabidopsis, orange, wild strawberry, apple and tomato. 

A putative topoisomerase (NCBI - XP_001769043.1) of Physcomitrella patens (Hedw.) B.S.G. was used as outgroup. Branches 

grouping the two fleshy climacteric fruit species are highlighted in red. Gene identifiers are available on Supplementary Table 1. 

 
Fig 5. Protein based phylogenetic analysis of fruit development related loci (Roeder and Yanofsky, 2006) in arabidopsis, orange, 

wild strawberry, apple and tomato. A putative topoisomerase (NCBI - XP_001769043.1) of Physcomitrella patens was used as 

outgroup. Branches grouping homolog genes of the two fleshy climacteric fruit species are highlighted in red, while branches 

grouping homolog genes of the two Rosaceae species are highlighted in green. Gene identifiers are available on Supplementary Table 

2. 

 

RIN targets by transcriptome and chromatin 

immunoprecipitation (ChIP) analyses, detected 342 

positively and 473 negatively regulated genes in which most 

of the positively regulated genes contained possible RIN-

binding sites (CArG-box motif), constituting promising 

targets for further studies (Fujisawa et al., 2012). RIN also 

seems to be important for the expression of NOR (Martel et 

al., 2011), another important TF involved in ripening. NOR is 

a member of the NAC (NAM, ATAF1,2, CUC2) family, in 

which mutation, similar to the ones occuring in rin, leads to a 

nonripening phenotype (Giovannoni, 2007). Another 

phenotype conferred by the malfunction of a gene in another 

important locus, the Cnr, is due to a mutation that promotes 

epigenetic changes in the promoter of the SQUAMOSA 

PROMOTER-BINDING (SBP/SPL) gene. This epimutation 

represses this gene, blocking the activation of downstream 

genes and consequently fruit ripening (Thompson et al., 

1999; Eriksson et al., 2004; Manning et al., 2006; Pech et al.,   

2008). The first SBP genes (SBP1 and SBP2) were isolated 

from Antirrhinum majus L. and were found to control early 

flower development by regulating the MADS-box gene 

SQUAMOSA (Klein et al., 1996). Later, SQUAMOSA 

PROMOTER-BINDING PROTEIN-LIKE genes have been 

extensively discovered in many terrestrial plants, playing 
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numerous important roles during plant growth and 

development (Chen et al., 2010) and also being pointed as 

necessary for rin induction of ripening-related genes (Martel 

et al., 2011). Similarly to what happens in Cnr locus, the 

possibility of epigenetic changes in ERFs has also been 

described (Santos et al., 2013). The ERF superfamily is not 

only involved in ripening, but also in several growth, 

development and stress related processes. These make the 

identification of ERF family members in several species an 

important step in the understanding of fruit maturation 

processes (Nakano et al., 2006; Pirrello et al., 2012; Girardi 

et al., 2013). Suppression of AP2/ERF genes, such as SlP2a, 

act downstream of rin, nor, and Cnr and may result in rapid 

softening and earlier ripening. SlP2a seems to be a negative 

regulator of ripening, promoting a negative-feedback with 

Cnr (Chung et al., 2010). In addition, it has been 

demonstrated that Cnr can bind to the promoter of AP2a in 

vitro (Karlova et al., 2011). A phylogenetic analysis (Figure 

4) of proteins encoded by rin, nor and Cnr homologous loci 

in Arabidopsis (A. thaliana), orange (C. sinensis), wild 

strawberry (F. vesca), apple (M. x domestica) and tomato 

(S. lycopersicon), show an interesting result, a higher 

similarity between genes of climacteric fleshy fruits such as 

tomato and apple than between genes of species from the 

same family (i.e., Rosaceae, for strawberry and apple). A 

similar phylogenetic analysis including other genes 

associated with flower and initial fruit development was also 

performed (Figure 5). This analysis, which aimed to assess 

whether these genes also maintain a greater proximity 

between climacteric and non-climacteric fruits, showed, 

however, a higher phylogenetic proximity between the two 

Rosaceae (F. vesca and M. x domestica) species inside each 

group of homologous genes, as expected. The only two genes 

of apple and tomato (climacteric species) that grouped again 

were KANADI 1 (KAN1) and CRABS CLAW (CRC). KAN 

and CRC are two closely related genes with roles in polar 

differentiation and development of the carpel, an organ that 

seems to be specially dependant of ethylene during 

development and senescence (Eshed et al., 1999; Kerstetter et 

al., 2001; Pascual et al., 2009). The KAN1 gene regulates 

genes involved in response to different hormones including 

ethylene, while CRC still needs more studies related to the 

identification of TF binding sites (Merelo et al., 2013). More 

studies on these transcription factors (Cnr, rin, nor) are in 

order to understand the genetic differences responsible for 

climacteric and non-climacteric metabolism. 

 

Conclusions and future directions 

 

Transcription factors showed to have great importance not 

only during early development but also in the regulatory 

control of ripening and senescence. Much progress in the 

identification of these regulators has been made so far, but 

much remains to be investigated. High throughput 

technologies are contributing greatly to the elucidation of 

development and ripening physiology. Newly sequenced 

genomes will provide a good overview on the evolution of 

these proteins over time and physiological differences 

between climacteric and non-climacteric fruits will be 

understood in details that will assist both post-harvest 

techniques and crop breeding. The transcriptional regulatory 

pathways involved in fruit ripening and the direct interactions 

between ripening-related TFs are still largely unknown. The 

possibility to predict the most likely functions of TFs based 

on phylogenetic and expression analysis has been already 

considered in this context (Hileman et al., 2006). Still, more 

efforts to systematically carry out comparative genomic or 

functional analyses of these genes across flowering plants are 

needed. Possibilities are expanding with the new technologies 

available and systems biology approaches that can provide a 

large amount of data to be explored in more efficient ways 

(Hertog et al., 2011). The brief phylogenetic analysis of 

genes involved in fruit ripening and development in 

Arabidopsis and their putative homologs in orange 

(C. sinensis), wild strawberry (F. vesca), apple 

(M. x domestica) and tomato (S. lycopersicon) shown in 

Figure 4 demonstrates that apparently the emergence of genes 

and alleles responsible for fruit climacteric and/or non-

climacteric behavior occurred before the divergence of these 

species and, for some reason, were held only in some species 

and/or varieties. Further studies are needed and should 

demonstrate how and why the climacteric behavior was 

important for the continuity of certain genotypes, but not for 

others. Species with dry fruits are probably the ancestors of 

fleshy fruit species, sharing common developmental 

mechanisms (Knapp, 2002). Arabidopsis contributed 

tremendously to the understanding of fruit development in 

dehiscent fruits, however a model species for studies of 

indehiscent fruits is needed. Tomato has the genome 

available at good quality (http://solgenomics.net/), and was 

also one of the first species to be genetically transformed by 

Agrobacterium tumefaciens (Filatti et al., 1987). As 

previously shown here, studies on this species have been 

contributing greatly to the understanding of ethylene induced 

modifications on flavor, sugar and acid contents, color, 

volatiles and texture during ripening of fleshy indehiscent 

fruits (Klee and Giovannoni, 2011; Pesaresi et al., 2014). The 

role of small RNAs (sRNAs) in ripening is also poorly 

understood. The CNR 3’ untranslated region has a micro 

RNA (miRNA) binding site that is complementary to 

miR156/157 but more studies about their interaction are 

needed (Dalmay, 2010). sRNAome sequencing of developing 

tomato fruits revealed that thousands of non-coding RNAs 

are differentially expressed during fruit development and 

ripening (Mohorianu et al., 2011). The role of these RNAs in 

fruit ripening may bring interesting findings in the 

understanding of ripening regulation and should be explored. 

Although fruit development and seed dispersal is a well 

understood process in Arabidopsis (Roeder and Yanofsky, 

2006), several studies are still needed in order to fill gaps that 

currently exist in this first plant model species. It is not yet 

known exactly how GA and auxin pathways interact to form 

the valve margin (Arnaud et al., 2010) and it is still needed to 

find out if the levels of abscisic acid (ABA) increase during 

silique development and senescence in order to validate the 

stomatal model proposed for AtNAP action in silique 

senescence (Kou et al., 2012). It is also needed to understand 

if the modified phenotypes obtained due to altered NTT 

expression in Arabidopsis are caused by deregulation of the 

cell cycle (Marsch-Martínez et al., 2014). Currently wide-

range analyses combined with bioinformatics are enabling a 

broader view of the transcriptional behavior of very specific 

tissues at key stages of reproductive development 

(Mantegazza et al., 2014). The formation of reproductive 

organs and fruits is regulated by a complex combination of 

genes. Also, multiple lineages of certain families of TFs 

controlling these phenomena have been maintained in plants 

(Nakano et al., 2006; Dreni and Kater, 2014), being the 

reasons for this high redundancy still unknown. The cost 

reduction and the improvement of sequencing technologies 

keep constant (Hamilton and Buell, 2012) and such 

improvements made possible the sequencing of several fruit 

plant genomes obtained so far. On proteomics a wide range 

of proteome resources are becoming available to assist the 

http://solgenomics.net/
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diversity of proteomic-based applications in plant sciences 

and these studies are already helping to elucidate 

physiological processes involved in fruit development and 

ripening (Carroll et al., 2013; Molassiotis et al., 2013). 

Regarding bioinformatics applied to systems biology, 

software and algorithm development is lagging behind from 

sequencing data generation. In genomics, new algorithms and 

software are needed in order to handle large, repetitive 

genomes (Hamilton and Buell, 2012). In the field of 

proteomic analyzes, false negatives due to environmental 

contamination, problems in database matching and curation 

of protein identifications are some of the major sources of 

problems (Marcotte, 2007; Bell et al., 2009). Finding 

alternatives to these problems is an important step for the 

advance in the knowledge about how maturation and ripening 

occur at the molecular level. However, the advances that are 

being made in this field points to a bright future on ripening 

research. 
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