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Abstract 
 

Basal stem rot (BSR) disease caused by Ganoderma boninense is the most serious and destructive disease in oil palm, especially in 
Southeast Asia and required urgent control measures to combat the disease outbreak. Information of understanding metabolite 

response of oil palm to BSR is limited. Therefore, parental palms with contrasting susceptibility to G. boninense based on previous 

oil palm progenies testing using root inoculation technique to identify oil palm progenies partially tolerant and susceptible  to G. 

boninense were examined by metabolomics approach using gas chromatography x gas chromatography-time-of-flight mass 
spectrometry (GC×GC-TOF-MS). Analysis of metabolomics data from GC×GC-TOF-MS was conducted by supervised multivariate 

analysis of partial least squares-discriminant analysis (PLS) and orthogonal partial least squares-discriminant analysis (OPLS-DA) 

that allowed cross-validation and response permutation test functions. As a result, seven potential metabolites that contribute to the 

contrasting susceptibility of oil palms to G. boninense were identified as mannose, xylose, glucopyranose, myo-inositol and 
hexadecanoic acid which were found high in partially tolerant oil palm whereas cadaverine and turanose were found high in 

susceptible oil palm as observed in fold changes of detected GC×GC-TOF-MS peaks. The results suggest that the employed strategy 

is a potential approach to profile and characterize leaf metabolome with contrasting susceptibility to G. boninense. This result 

provide baseline in future studies utilizing metabolomics in identifying potential biomarkers by screening larger population of truly 
resistant palms to G. boninense. 
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squares-discriminant analysis; PLS-DA_ Partial least squares-discriminant analysis; VIP_Variable importance for projection.  
 

Introduction 

  

Oil palm (Elaeis guineensis Jacq.) is the world's highest 
yielding edible oil crop as it produced 60.9 million tonnes of 

palm oil and 6.67 million tonnes of palm kernel oil, which 

roughly account for 29.4% of the world production of oils 

and fats in year 2016 (Oil World Annual, 2016). Palm oil is 
mainly used as an edible product in a wide range of dietary 

components and non-food sector (Sundram et al., 2003). 

Malaysia is currently the second largest producer and also 

one of the biggest exporters of palm oil in the world. As for 
today, 5.74 million hectares of oil palm plantation in 

Malaysia producing 17.32 million tonnes crude palm oil 

(CPO) with export revenue of oil palm in 2016 reached 

RM64.58 billion (MPOB, 2016). However, the oil palm 
industry is facing several challenges including lack of 

suitable land, shortage of labour and the oil palm diseases. 

Among the oil palm diseases that occur in oil palm 

plantations, basal stem rot (BSR) caused by G. boninense is 
the most destructive (Susanto et al., 2005). In Malaysia, BSR 

has caused severe losses of overall yield per hectare with 

increasing incidence and for which more effort and action 

have to be taken to overcome the problem. BSR can cause 
economic losses between RM225 million to RM1.5 billion a 

year (Hushiarian et al., 2013). Once the disease has affected 

more than 10% of the stand, economic loss will begin (Hasan 

and Turner, 1998) and further loss of the stand to 50% will 
cause a 35% reduction in fresh fruit bunch (FFB) yield 

(Cooper et al., 2011). There were control measures being 

adopted by plantation management to minimize the spread of 

BSR which include soil mounding, sanitation by removal of 
diseased palm, stump treatment with dazomet, fungicide 

hexaconazole, biological treatment and recently development 

of GanoCareTM fertilizer (Idris et al., 2015; Idris, 2011). 

These treatments can only control the disease and at best only 
slow down the disease progress. The availability of tolerant 

palm to G. boninense is one of the most important priorities 

in terms of increasing the overall output of the oil palm 

industry. Possible sources of highly resistance palm to BSR 
have been reported through progeny testing to G. boninense 

(Durand-Gasselin et al., 2005; Idris et al., 2004). G. 

boninense study on root inoculation technique provide 
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important information towards understanding BSR 

mechanism as well as looking into molecular diagnostic tool 
for early disease detection including protein and metabolite 

markers (Syahanim et al., 2013). Metabolomics analysis can 

help uncover details of mechanism in disease tolerance at 

molecular level. Plant metabolites in oil palm roots which are 
lipids and heterocyclic aromatic organic metabolites might 

response in early defence mechanism towards G. boninense 

infection (Nusaibah et al., 2016). In other studies, LC-MS 

approach has been used to profile metabolite in the partially 
tolerant and susceptible oil palm suggesting phenolics 

metabolite might be significant for distinguish these palms 

with contrasting susceptibility to G. boninense (Nurazah et 

al., 2013). Metabolomics tool has been widely used in 
application of plant disease and helps to understand the 

metabolites that may functionality contribute to plant 

susceptibility and resistance to pathogens (Allwood et al., 

2008) in which gas chromatography-mass spectrometry (GC-
MS) is one of the technique used in application of metabolite 

profiling. This tool have been successfully applied to study 

metabolite changes in rice leaf subjected to fungal pathogen 

Magnaporthe grisea and the results obtained suggested that 
metabolomics has potential to unravel metabolites in 

distinguished different susceptibility of rice leaf with 

response in plant-pathogen interactions (Jones et al., 2011). 

Besides that, there was also investigation of volatile 
metabolite content changes in healthy and inoculated tomato 

with three different bacterial pathogens to provide 

information of pathogens involvement during postharvest 

handling, storage and the food borne disease of tomato 
(Ibrahim et al., 2011). The data obtained from the analytical 

tool was usually first subjected to chemometrics analysis for 

data analysis. Partial least squares-discriminant analysis 

(PLS-DA) and orthogonal partial least squares-discriminant 
analysis (OPLS-DA) is one of the supervised chemometric 

tools widely used in metabolomics in which supervised 

chemometric method provides a way of troubleshooting 

potential metabolites responsible for variation within the 
groups of samples analysed (Seger and Sturm, 2007). 

To date, no known comprehensive study on oil palm spear 

leaf has been analysed with GC-MS and multivariate analysis 

towards understanding mechanism involved in oil palm-G. 
boninense interaction and metabolite biomarkers or 

phenotyping associated to BSR in oil palm. The use of 

GCxGC-TOF-MS and multivariate analysis are enabling 

potential metabolites involved in disease mechanism and to 
distinguish the oil palm with contrasting in susceptibility to 

G. boninense at the level of metabolites in their leaf extracts. 

In the future, it will be desirable for oil palm researchers to 

analyse a wider range of broadly applicable metabolomics 
tools for the identification of metabolites from highly or true 

resistant palm to G. boninense and to improve the credence 

of potential metabolites towards biomarkers discovery. This 

will be enable breeders to use the marker in a relatively 
reliable way of screening large population for the tolerant 

palm to G. boninense.  

 

Results and Discussion 

 

Multivariate analysis of oil palm spear leaf partially 

tolerant and susceptible to G. boninense 

 
The data from GC×GC-TOF-MS were analysed by the 

SIMCA-P+ software to comprehensively distinguish between 

the spear leaf metabolomes of partially tolerant and 

susceptible oil palms. The data were first loaded into the 
unsupervised principle component analysis (PCA) to obtain 

trend of separation of samples according to groups. However, 

no clear separation was obtained to differentiate the two 
groups of the oil palms, therefore, further separation of the 

groups were performed by supervised analysis of partial least 

squares-discriminant analysis (PLS-DA) and orthogonal 

partial least squares-discriminant analysis (OPLS-DA) 
model. PLS-DA regression, also known as projection on 

latent structures is a method practically used for classification 

a set of group samples and selection of biomarker in 

metabolomics studies (Szymańska et al., 2012). The model is 
built between dependent variables (Y) and independent 

variables (X) (i.e. predictors) simultaneously, where the 

dependant variables (Y) represent samples classification (e.g. 

two groups of samples were set as A and B) and mapped into 
a linear space, therefore PLS-DA can improved the 

separation between two groups of samples. In this analysis, 

the dependent variables (Y) were set as (1) susceptible oil 

palms, (2) as partially tolerant oil palms. The aim of the PLS-
DA model is to predict a set of dependent variables (Y) from 

a set of independent variable (X) to find the latent variables 

(LVs) which have the best predictive power. The LVs are 

aligned along the direction that maximizes the covariance 
between X and Y variables (Robotti et al., 2014). In this 

analysis, the separation of the two groups of the oil palms in 

the PLS-DA model were explained by the first two LVs 

(LV1 versus LV2) of the total spectral variation, which 
accounted for 62.5% (Fig. 1). The same data were further 

analysed with OPLS-DA model which is also known as 

orthogonal projections to latent structures, an extension of 

PLS regression method presenting an integrated orthogonal 
signal correction filter which separates the systematic 

variation in X into two parts, one that is linearly related to Y 

and one that is orthogonal to Y. Hence, the OPLS model 

consists of two blocks of modeled variation which are the Y-
predictive block refer to variation between the class and Y-

orthogonal block represents uncorrelated variation within the 

class (Wiklund et al., 2008; Bylesjö et al., 2007). OPLS-DA 

model data in this analysis resulted in usage of one predictive 
and three orthogonal component (1+2) and clear separation 

of a metabolic signature between partially tolerant and 

susceptible palm were observed in OPLS-DA score plot (Fig. 

2). Both PLS-DA and OPLS-DA models qualities were cross 
validated with R2 and Q2 (goodness of fit) parameters. In this 

study, the PLS-DA model gave the values of R2X (cum) of 

0.727, R2Y (cum) of 0.867 and Q2 (cum) of 0.701 while 

OPLS-DA model had the R2X (cum) of 0.727, R2Y (cum) of 
0.867 and Q2 (cum) of 0.796 (Table 1). Values of R2 and Q2 

near to 1.0 indicate perfect description and perfect 

predictability of the model respectively (Triba et al., 2015). 

In general, values of R2 and Q2 more than 50% are 
considered satisfactory for metabolic experiment and are able 

to explain the model (Azizan et al., 2015). Hence, the models 

can be utilized to explain the discrimination between partially 

tolerant and susceptible oil palms. The model was further 
validated using CV-ANOVA and permutations test (Xu et 

al., 2015). The CV-ANOVA is constructed on cross 

validation for the estimation of independent predictors 

(OPLS-scores) and predictive residuals. The use of CV 
predictive residuals makes the CV-ANOVA more consistent 

than ordinary ANOVA. Lower p-value showed that the group 

separation was high (Musharraf et al., 2016). Here in this 

analysis the p-value for the model was p=0.000110969 
suggesting that the group separation was significant. The 

values of R2 intercept (goodness of fit) and Q2 intercept 

(predictive capability) in permutation test should be <0.4 and 

<-0.04, respectively (Ma et al., 2009) and this model had R2 
intercept of 0.354 and Q2 intercept of -0.429. Furthermore,  
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Table 1. Explanation and predictability values of the partial least squares-discriminant analysis (PLS-DA) and orthogonal partial 

least-squares-discriminant analysis (OPLS-DA) of partially tolerant and susceptible oil palms. 

 R2X R2Y Q2 

PLS-DA 0.727 0.867 0.701 

OPLS-DA 0.727 0.867 0.796 

 

 
Fig 1. PLS-DA score plot based on GCxGC-MS-TOF data of partially tolerant and susceptible oil palms that was performed using 
LV1 vs LV2 and gave a total variance of 62.5%. 

 

Table 2. Seven metabolites that contribute to the grouping of partially tolerant and susceptible oil palm with VIP>1 and p<0.05.  

No Metabolites RT (sec) log2 (FC) p-value CAS 

1 Mannose (MEOX-

5TMS) 

1619 0.96 0.037 128705-67-9 

2 Xylose 
(MEOX-4TMS) 

1599 1.11 0.026 18623-22-8 

3 Glucopyranose 

(5TMS) 

1646 1.25 0.028 - 

4 Hexadecanoic acid 
(TMS) 

1682 0.51 0.002 55520-89-3 

5 Myo-inositol (6TMS) 1736 0.48 0.002 2582-79-8 

6 Cadaverine 

(4TMS) 

1613 -1.11 0.001 65898-76-2 

7 Turanose (7TMS) 2370 -0.97 0.002 60065-05-6 
RT (sec); retention time in seconds, log2FC; log2 FC (partially tolerant/susceptible oil palms). 

 

 

 
Fig 2. OPLS-DA score plot of partially tolerant and susceptible oil palms with values of R2X=0.727, R2Y=0.867 and Q2=0.796. 
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Fig 3. Response permutation test (n=100) derived from PLS-DA model. Actual model parameter is on the right-hand side while the 

permutated model parameter is on the left-hand side. The actual model parameter exhibited higher values that permutated model 

parameters with value of R2 and Q2, 0.354 and -0.429 respectively. 
 

 
Fig 4. S-plot derived from OPLS-DA for partially tolerant and susceptible oil palms with value of p ≥|0.05| and p(corr) ≥|0.5|, which 

showed the significant different metabolites for each group (in box). 
 

the original model was on far right and remained higher than 

those of the 100 permuted models to the left (Fig. 3). 

Therefore, the result displayed good elucidation of the 
sample classification information and can be further 

analysed. By using OPLS-DA, an improved visualization and 

discrimination of the metabolites between the two groups of 
oil palms could be exhibited. To find out metabolites that 

have most significant influence the groups of partially 

tolerant and susceptible oil palms for the discrimination, S-

plot derived from OPLS-DA was acquired. S-plot was 
created using the loading profile of the first component (p) 

and correlation of the first component (p(corr.)) to visualize 

both the covariance and correlation between the metabolites 

and the groups of classification. Metabolites responsible for 
the class classification were selected with p ≥|0.05| 

(magnitude) and p(corr.) ≥|0.5| (reliability) from the S-plot 

which indicate the metabolites distinguishing the two groups 

(Kim et al., 2015; Suvagandha et al., 2014) and values of 
variable importance for projection (VIP) which were 

exceeding 1.0 were set as metabolite cut-off. From the 

observation of S-plot, seven (7) metabolites were found to 

contribute to the grouping of partially tolerant and susceptible 
oil palms. All the seven (7) metabolites had the VIP values 

more than 1.0 and they were individually identified by 

comparing the detected mass-to-charge (m/z) ratios against a 

standard mass chromatogram from National Institute of 

Standards and Technologies (NIST) database with peaks 
similarity and reverse number more than 800 (Dallüge et al., 

2003). Five (5) metabolites which were found high in 

partially tolerant oil palms were mannose (C6H12O6), xylose 
(C5H10O5), glucopyranose (C6H12O6), myo-inositol 

(C6H12O6) and hexadecanoic acid (C16H32O2) (lower left-side 

box in Fig. 4) with positive values of fold change indicating 

higher presence in partially tolerant oil palm. Two 
metabolites were found high in susceptible palms (upper 

right-side box in Fig. 4) were identified as cadaverine 

(C5H14N2) and turanose (C12H22O11) with negative values of 

fold change indicating higher presence in susceptible oil 
palms. All the seven (7) metabolites showed the p-value < 

0.05 (Table 2).  

 

Seven metabolites contributing to the grouping of partially 

tolerant and susceptible oil palms in S-plot of OPLS-DA 

 

According to S-plot derived form OPLS-DA model, five 

metabolites which were mannose, xylose, glucopyranose, 
myo-innositol and hexadecanoic acid were found high in 

spear leaf of partially tolerant palms. These metabolites are 
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vital for plant growth and defence mechanism against 

pathogen. Mannose and xylose are monomers of 
hemicellulose. Basically, hemicellulose is a polysaccharides 

and is one of the components of the cell wall besides 

cellulose and pectin (Scheller and Ulvskov, 2010). The 

physiology of plant cell wall polysaccharides with high 
structural complexity has suggested the possibility of a 

response and release components that might lead to defence 

mechanism by the plant (Vorwerk et al., 2004). Generally, 

most plant pathogens actively penetrate the plant cell barrier 
to access intracellular nutrients and successively, to 

strengthen the cell wall, plants release antimicrobial 

compounds into the cell wall to stop pathogen penetration. 

Different composition of cell wall components affects 
defensive response against pathogens in Arabidopsis thaliana 

(Ramirez et al., 2011). Thus, high deposition of 

polysaccharides (to strengthen the cell boundary) is required 

as an effective line defence for the plant. Significantly higher 
level of xylose was detected in rice leaf cell walls of  GIF1-

OE in which GIF1-OE was found more resistant than wild-

type against pathogens Xanthomonas oryzae pv. Oryzae and 

Magnaporthe oryzae (Sun et al., 2014). In addition, higher 
level of xylose were reported to contribute to thicker cell wall 

and enhanced resistance against pathogen in Arabidopsis 

thaliana and proved to be a defence mechanism against corn 

borer (Ostrinia nubilalis) in resistant inbred lines of maize 
(Zea mays) (Miedes et al., 2014; Barros-Rios et al., 2011). 

Therefore, high level of xylose metabolite in partially tolerant 

palms might contribute to high accumulation of plant cell 

wall in oil palm tissues that can be related to high resistance 
of the oil palms. 

Increase in abundance of glucopyranose and myo-inositol 

metabolites in resistant wheat cultivar to Fusarium head 

blight (FHB) were managed to be observed in GC-MS 
analysis (Hamzehzarghani et al., 2005). Myo-inositol is one 

of the stereoisomers of inositol which is widely occurring in 

nature. It is a compound that is used for development and 

growth process in plant. Over expression of inositol were 
reported in resistant plants to diseases (Smart and Flores, 

1997). 

The hexadecanoic acid, a compound of a fatty acid group, 

was also detected in high presence in partially tolerant oil 
palms. Several fatty acids have been documented to have 

antimicrobial activity (Walters et al., 2004). In plant pathway 

elucidation, hexadecanoic acid is required for the synthesis of 

jasmonic acid which can be via at least two pathways, the 
established octadecanoid pathway from linolenic acid 

(C18:3) and the hexadecanoid pathway from 

hexadecatrienoic acid (C16:3) (Farmer et al., 1998). Jasmonic 

acid functions as a trigger to the phenylpropanoid pathway to 
increase the synthesis of phenolic compounds (Gundlach et 

al., 1992). Hexadecanoid acid plays as significant role in the 

synthesis of jasmonic acid and can stimulate the resistance 

mechanism in plants. Metabolomics analysis using GC-MS 
discovered hexadecanoic acid and myo-inositol as the 

resistance related constitutive metabolites by which 

resistance-related (RR) metabolite is defined as metabolites 

that are in higher abundance in wheat resistant near isogenic 
lines (NIL) than susceptible wheat NIL to FHB 

(Hamzehzarghani et al., 2008). Recently, high level of 

hexadecanoic acid was also detected in resistant root samples 

of oil palm which was proven to play a role in defense 
mechanisms (Nusaibah et al., 2016). 

Another two metabolites which were turanose and 

cadaverine were found high in susceptible palm. Cadaverine 

is a metabolite from amine group. To our best knowledge, 
reports on plant defence mechanism involving cadaverine 

and turanose are still inadequate. In rice treatment with 

rhizobacteria Bacillus amyloliquefaciens (SN13) against 
pathogenic Rhizoctonia solani, turanose among other 

metabolites were catabolized to maintain survival of the plant 

(Srivastava et al., 2016). Cadaverine was also being detected 

high in inoculated susceptible cultivar of soybean germplasm 
to Fusarium tucumaniae, the main causes of sudden death 

syndrome (SDS) of soybean in Argentina (Scandiani et al., 

2015). These results deserve further validation with a large 

number of susceptible and tolerant oil palm to provide more 
assurance that the screening method can predict cultivar 

response to G. boninense infection in the field. 

 

Materials and Methods 
 

Chemicals and reagents 

 

Internal standards (ribitol, C5H12O5) and dried pyridine were 
purchased from Sigma-Aldrich (Steinheim Germany), and 

methanol LichroSolv and chloroform SupraSolv (HPLC 

grade) are from Merck (Darmstadt, Germany). O-

methoxyamine hydrochloride (98%) was obtained from Fluka 
(Germany) and N-methyl-N-(trimethylsilyl) trifluoro- 

acetamide (MSTFA) is from Thermo Scientific (Rockford, 

USA).  

 
Plant materials  

 

Spear leaf from six biological replicates of partially tolerant 

parental palms and six susceptible parental palms were 
selected based on the diagram (Nurazah et al., 2013) 

translated from a study conducted by Idris et al. (2004) on 

selection of oil palm progenies for resistance to G. boninense. 

They were collected in Malaysian Palm Oil Board (MPOB) 
Kluang Research Station, Johor, Malaysia. The samples were 

harvested from 8.30 to 10.30 am, immediately washed with 

water to remove any dust and cut into 2-3 cm pieces. Then 

the fresh pieces were immediately frozen in liquid nitrogen in 
order to quench enzyme activity and kept at -80oC for further 

analyses.  

 

Extraction and derivatization of oil palm spear leaf 

metabolites 

 

Method of extraction was adapted from Morgenthal et al. 

(2007) with slight modification. Spear leaves were ground to 
a fine powder. Approximately 0.100 g of the spear leaf 

powder was weighed and added with 1.4 ml methanol and 60 

µl 1000 ppm ribitol as an internal standard. The samples were 

centrifuged at 4000 rpm for 30 min. Eight hundred 
microlitres of chloroform and 1 ml water was added to the 

liquid phase. The extracts were again centrifuged at 4000 rpm 

for 30 min and the resulting upper layer was collected. The 

lower phase was re-extracted in 1 ml methanol followed by 
centrifugation at 4000 rpm for 30 min. Next the supernatant 

was dried under nitrogen stream. Then, the resulting pellet 

was dissolved in 20 µl methoxymine hydrochloride in dried 

pyridine solvents (20 mg/ml) and incubated at 37°C for 90 
min with rigorous shaking. Next, 180 µl N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA) was added and 

the samples were incubated at 37°C for another 30 min 

followed by rigorous shaking. The ratio used for 
methoxymine hydrochloride in dried pyridine solvents: 

MSTFA is 1:9 where lower amounts of pyridine will give 

better peak shapes with spitless injection (Fiehn, 2006). 
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GC×GC-TOF-MS experimental conditions 

 
The samples were analyzed with a LECO Pegasus 4D 

GC×GC-TOF-MS (LECO Corporation, St. Joseph, MI, USA) 

equipped with an Agilent 6890 N GC. The first column was 

30 m x 250 µm x 0.25 µm, Rtx-5 with 10 m integrated guard 
column (Restek Corporation, Bellefonte, USA) and the 

second column was 1 m x 0.10 mm x 0.10 µm Rxi-17 

(Restek Corporation, Bellefonte, USA). Cryogenic 

modulation was used for 5 sec. High purity helium (99.99%) 
was the carrier gas and was set at a constant flow of 1.0 

ml/min. The first column oven was held at 50°C for 5 min 

and then ramped at 10°C/min up to 265°C for 20 min while 

the second column oven was held at constant 15°C higher 
than the first column oven. The GC inlet and transfer line 

were set at 250°C and 280°C, respectively. The ion source 

was set at 200°C and the solvent delay time was 15 min. 

Mass spectra from m/z 45-1000 were collected at 20 spectra 
per second. The detector voltage was 1600 V and electron 

energy was 70 eV. 

 

Data processing 

 

The raw data were processed with LECO® ChromaTOF® 

optimized for Pegasus® 4D software. The data acquired from 

the workstation were converted to cumulative distribution 
function (.cdf) and were imported into the XCMS software 

(http://metlin.scripps.edu/xcms/) which is based on the R 

software platform (www.r-project.org). Internal standard and 

the masses of m/z 73, 147 and 207 peaks caused by column 
bleed (from the stationary phase) and MSTFA derivatization 

procedure were omitted (Wang et al., 2015; Hill and 

Roessner, 2013). Finally, the data set in excel format 

contained samples information, retention times and peak 
areas were further analyse with multivariate analysis.  

 

Multivariate analysis of PLS-DA and OPLS-DA 

 
PLS-DA and OPLS-DA supervised analysis were performed 

with software SIMCA-P+ Version 12.0 (Umetrics AB, 

Sweeden). Both analysis models were applied to the data 

with Pareto scaling to enhance slow abundant peaks without 
significant amplification of noise (Wang et al., 2013). The R2 

(cum) and Q2 (cum) values were extracted to explain the 

models for its goodness of prediction, representing total 

explained variance and the model predictability. CV-
ANOVA and permutation methods were also employed on 

the models for their further validness. To identify the 

metabolites that significantly contribute to the variation of 

the groups, the values of variable importance in projection 
(VIP) were inspected. In the SIMCA-P+ software, the VIP 

value is unitless and was created based on a weighted and 

quantitative measure of discriminatory power of the 

metabolites. The greater the VIP number represent the higher 
discriminatory power of the metabolite and VIP scores >1 

generally show the metabolites that carrying highly 

discriminating information between the classes (Davis et al., 

2012).  
 

Conclusion 

 

The development of rapid and robust metabolomics method 
such as GC-MS to screen out potential metabolite markers is 

a novel strategy that will improve the understanding on the 

oil palm defence mechanisms against G. boninense. Although 

resistant materials are not readily available, a batch of leaf 
tissue samples analysed by multivariate statistical analysis 

could be representatives in distinguishing the partially 

tolerant from susceptible oil palms. Several metabolite 
markers from different classes of plant compounds were 

identified, which have potential as defence-related oil palm 

metabolites markers for basal stem rot (BSR). However, the 

elucidation of these metabolites involvement in the tolerance 
mechanism against G. boninense remains to be deciphered. 

The developed method may be applied for future selective 

breeding of oil palm plants (metabolomics-assisted breeding 

technique). 
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