Bioinformatic characterization and expression analysis of miRNAs in *Solanum lycopersicum*

Ehsan Valiollahi1*, Mohammad Farsi1, Pedro Fevereiro2*, Amin Mirshamsi Kakhki1

1Department of Biotechnology and Plant Breeding, College of Agriculture Ferdowsi University of Mashhad, Mashhad, Iran
2Instituto de Tecnologia Quimica e Biológica, Laboratório de Biotecnologia de Células Vegetais, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal

*Corresponding author: valiollahie@gmail.com, psalema@itqb.unl.pt

Abstract

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that modulate gene expression in both plants and animals and are involved in several biological processes, ranging from organ differentiation to biotic and abiotic stress responses. The comparative analysis of the target genes for miRNAs families may augment our understanding of conserved regulatory mechanisms in the plant kingdom. Here, we used a high throughput sequencing and computational approach to identify new miRNAs in *S. lycopersicum*. Using this approach 18 miRNAs were identified in *S. lycopersicum* leaf samples. We found a closely related mature sequence for Sly-miR319 that derived from distinct precursor sequences and genomic loci. Furthermore, a qRT-PCR-based assay was performed to validate the prediction of five identified miRNAs. Identification of miRNA targets showed that most of the identified miRNAs such as Sly-miR156a, Sly-miR164, Sly-miR166a, Sly-miR172a, Sly-miR319a and Sly-miR482c, modulate the expression of transcription factors that regulate plant development, signaling and metabolism. In brief, our reliable computational analysis of miRNAs and their targets suggests that many important miRNA-targets circuits are also conserved in *S. lycopersicum* and fulfill critical roles in growth and development. These findings provide valuable information for functional characterization of miRNAs in *S. lycopersicum*.

Keywords: *Solanum lycopersicum*; High-throughput sequencing; MicroRNAs.

Abbreviations: miRNA_MicroRNA; pre-miRNA_MicroRNA precursor; miRNA*_MicroRNA star; RISC_RNA-induced silencing complex; TF_transcription factors qRT-PCR_quantitative real-time PCR.

Received: 11 Oct 2013; Revised: 14 Jan 2014; Accepted: 16 Jan 2014.

Introduction

MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that modulate gene expression in both plants and animals (Carrington and Ambros, 2003, Voinnet, 2009). Mature miRNAs are derived from single-stranded RNA transcripts that possess an imperfect stem-loop secondary structure (Jones-Rhoades et al., 2006). These hairpins are processed by DCL1 into the miRNA/ miRNA* duplex in the nucleus and are transported to the cytoplasm in plants (Reinhart, 2002, Eamens et al., 2011). The miRNAs are incorporated into the RNA induced silencing complex (RISC), which uses them as guides to recognize target complementary miRNAs and negatively regulate their expression by degradation (Llave et al., 2002) or repression of productive translation (Gandikota et al., 2007). However, recent studies have shown that miRNAs can also positively stimulate the translation of a reporter miRNA when bound to a specific miRNA (miR369-3) where the cultured mammalian cells are serum-starved (Vasudevan et al., 2007). Plant miRNAs play vital roles in multiple essential biological processes, such as leaf morphogenesis and polarity (Palatnik et al., 2003), floral organ identity (Aukerman and Sakai, 2003), and stress responses (Sunkar and Zhu, 2004, Sunkar et al., 2007). Moreover, a major category of plant miRNA target genes have been predicted or confirmed to encode transcription factors or other regulatory proteins (Bartel, 2004). Thus the activation of miRNAs under stresses will lead to the repression of many protein-coding genes and affect a variety of cellular and physiological processes. In animals, miRNAs interact with their target sequences in the 3’-UTR through imperfect base-pairing, resulting in the arrest of translation (Bartel, 2009), while plant miRNAs generally recognize their target site through perfect or near-perfect complementary, directing cleavage of miRNAs (Rhoades et al., 2002). This suggests that the miRNA-target modules should be conserved in long evolutionary timescales. As expected, earlier studies demonstrated that the targets of conserved miRNAs have a narrower range of functions than the targets of non-conserved miRNAs (Willmann and Poethig, 2007). Therefore, a comparative analysis of the target genes for miRNAs families may augment our understanding of conserved regulatory mechanisms in the plant kingdom. Identification of miRNAs in different plant species has been based on the cloning of small RNA fractions and/or the prediction of miRNA genes in genome sequences based on sequence similarity (Jones-Rhoades et al., 2006). These approaches have revealed or predicted several hundred miRNA genes in *Arabidopsis*, rice and poplar, for which complete genomes are available. All
the plant miRNAs reported are available in the Sanger miRNA register (Griffiths-Jones et al., 2008). Recently there has been a surge of interest in identifying miRNAs and profiling their expression pattern using deep sequencing of specifically prepared low-molecular weight RNA libraries. In fact, this method has been used for both purposes in diverse plant species (Fahlgren et al., 2007; Wark et al., 2008, Zhu et al., 2008). In this study we proposed to identify and characterize miRNAs that control development in *S.lycopersicum* via sequencing small RNA libraries derived from *S.lycopersicum* seedling. We employed miRDeep-P (Yang and Li, 2011), utilizing a probabilistic model of miRNA biogenesis to analyze the miRNA transcriptome in plants, to identify potential miRNA precursor transcripts, which provides a deeper understanding of their transcription and regulation. We studied expression patterns of the *S.lycopersicum* miRNAs by stem-loop qRT-PCR technique and predicted potential target genes of most known and new miRNAs in *S.lycopersicum*. Most of the target genes were found to be transcription factors which regulate plant growth, development and metabolism. We believe that, this study will help accelerate our understanding of miRNAs regulatory roles in critical biological processes and these results could be useful for further characterizing the miRNA transcriptome in plants.

Results and discussion

Identification of potential miRNAs in *S.lycopersicum*

In this study, more than five million unique *S.lycopersicum* small RNAs were introduced to the non-coding RNA database, Rfam (16,219 sequences) with removed miRNAs, to trim and filter contaminated reads from small ribosomal and nuclear RNAs. 48026 sequences that belong to tRNA, sRNA, snoRNA and smRNA were identified by the Bowie aligner and were not included in the downstream analysis of miRNA identification. The sequence tags varied in length from 18 bp to 33 bp as seen in Figure 1, with the highest abundance around 23 to 24 bp. The average length of the reads is 23 bp. We compared trimmed sequences to annotated *S.lycopersicum* miRNAs and their precursors that were deposited in miRBase (Release 20). We found that there are 13 overlaps, including Sly-miR156a, Sly-miR156c, Sly-miR162, Sly-miR166a, Sly-miR166b, Sly-miR167, Sly-miR169, Sly-miR171a, Sly-miR171b, Sly-miR172b, Sly-miR376, Sly-miR428c and Sly-miR6024. Furthermore, we saw three distinct precursor sequences for Sly-miR171a (Table 1). This is probably for improving this miRNA performance in gene regulation. Usually, conserved miRNA are present in different plant lineages and are encoded by multiple loci in the genome to attain high expression levels. In addition to the miRNAs already published and annotated in the miRBase another 5 non reported miRNAs in miRBase and their complementary miRNAs* were identified in our data (Table 2). The first criteria for microRNA identification is the concomitant presence of the mature miRNAs and the respective miRNA star sequences in the datasets (Rajagopalan et al., 2006). miRNAs are thought to be more stable than miRNA* *in vivo* due to their combination with RISC (Jones-Rhoades et al. 2006). We found more miRNA sequences than miRNA* in our data, supporting this observation. In Arabidopsis miRNA* species had ~9% as many reads as the mature miRNAs (Rajagopalan et al., 2006) also supporting our observations. Among the identified miRNAs, Sly-miR164, Sly-miR390, Sly-miR396 and Sly-miR408 are newly found families in *S.lycopersicum* that have not been published in miRBase. According our analysis, we also found a closely related mature sequence for Sly-miR319 that derived from distinct precursor sequences and genomic loci (Table 2). After the identification of potential miRNAs, A+U content of candidate miRNAs were evaluated. The sequences of the pre-miRNA have A+U content ranging from 50.0% to 67.0% (Table 2), which is in agreement with the conception that miRNA precursors and mature miRNAs contain more A+U nucleotides than G+C (Guddeti et al., 2005). The average length of miRNA precursors in *S.lycopersicum* is about 70nt, and the variation of the size of the identified miRNAs within different families suggests that they may propose unique functions for tuning their target expression. The location of the mature miRNA sequences in the precursors is variable. In the Sly-miRNA390 and Sly-miRNA164 pre-miRNAs, the mature miRNA sequences were located at the 5’ end of the precursors, while they were found at the 3’ end in the Sly-miRNA319 and Sly-miRNA408 pre-miRNAs. The stem-loop structures of new miRNA precursors are shown in Fig. 2.

Verification of high-throughput sequencing data by quantitative real-time PCR

To validate the prediction of miRNAs in *S.lycopersicum* and determine miRNA expression profiles in five weeks old *S.lycopersicum* seedlings, we performed a stem-loop RT-PCR and qRT-PCR assay. Each PCR reaction used one universal reverse primer corresponding to the stem-loop region and one miRNA-specific forward primer. By this procedure, we were able to recognize a positive signal of the expected size at about 60 nt, and validate the presence of these miRNAs. In this experiment all of the putative miRNAs were detected in three replicate, without any nonspecific amplification bands (Fig.3).

Target gene prediction of miRNAs in *S.lycopersicum*

Gaining insight into the miRNA targets will help us to understand the functional importance of miRNAs. Previous research indicated that miRNA target sites are conserved, thus the conserved sequence can serve as a filter to define putative targets (Ioshikhes et al., 2007; Lall et al., 2006). According to information provided in National Center for Biotechnology Information (NCBI) databases, the identified miRNA precursors could be separated into several groups. The largest group encodes transcription factors, which are known to be involved mainly in plant growth and developmental patterning. This is probably a general characteristic of plant miRNAs that tends to be complementary to regulatory targets (Qu et al., 2007). The next group contained targets encoding a range of different proteins implicated in various metabolic processes, while another group is involved in functions such as hormone responses, stress defense and signaling. Interestingly, a miRNA can be complementary to more than one regulatory target (Table 3). This confirms the possibility that these hits are merely the consequence of complementarity to a nucleotide sequence that encodes a critical and conserved protein motif among gene family members (Rhoades et al., 2002). In the present study, we presented global predictions of the targets (Table 3) of all the known and new *S.lycopersicum* miRNAs identified in this work, which should therefore help to guide experimental verification and potentially uncover important miRNA-target circuits in the future research.
Furthermore, evidence indicates miRNAs are one essential member of these mechanisms and are involved in early plant organogenesis events, including flower development and vegetative phase changes (Wu and Poethig, 2006). Functional analyses of target gene mutants in which miRNA-resistant target genes are ectopically expressed. The well-conserved *S. lycopersicum* miRNAs have homologous target genes and operated analogous molecular functions among diverse species in plant kingdom. For instance, miR156 is generally known to regulate SBP family transcription factor genes, and resistant target genes are involved in early flower development and vegetative phase changes (Wu and Poethig, 2006). The biological function of miR156 was investigated by overexpression in *S. lycopersicum*. Transgenic *S. lycopersicum* plants overexpressing sly-miR156a exhibited a drastically altered phenotype, such as dwarfism, a ‘bush-like’ structure, more abundant leaves, shorter plastochron, and altered phenotypic features (Wu and Poethig, 2006). The well-conserved *S. lycopersicum* miRNAs have homologous target genes and operated analogous molecular functions among diverse species in plant kingdom. For instance, miR156 is generally known to regulate SBP family transcription factor genes, and resistant target genes are involved in early flower development and vegetative phase changes (Wu and Poethig, 2006). The biological function of miR156 was investigated by overexpression in *S. lycopersicum*. Transgenic *S. lycopersicum* plants overexpressing sly-miR156a exhibited a drastically altered phenotype, such as dwarfism, a ‘bush-like’ structure, more abundant leaves, shorter plastochron, and altered phenotypic features.
smaller and fewer fruits, and produced numerous adventitious roots (Zhang et al., 2011). The inflorescence structures of miR156 overexpressing plants phenocopied the sft mutant (Lifschitz et al., 2006). *S.lycopersicum* sympodial shoot development is regulated by the SFT/SP (Single Flower Truss/Self-Pruning) balance (Shalit et al., 2009), so the aberrant vegetative inflorescence shoots of the transgenic plants may be attributed to the decreased SFT/SP ratio. The targets of miR156 included six (SBP)-box, Transcription factor genes were significantly down-regulated in the miR156-overexpressing plants (Zhang et al., 2011). According to our results, *S.lycopersicum* No Apical Meristem/Cup-shaped Cotyledon (NAC) TF genes were identified as targets of miR164. Several NAC-domain genes, including AtCUC1 and AtCUC2 are subject to post transcriptional regulation by miR164. Analysis of miR164 mutations and overexpression, as well as of miR164-insensitive CUC forms has further revealed the importance of these genes for proper plant development (Mallory et al., 2004, Sieber et al., 2007). As shown in previous research, miR166 in other species targets TF genes of the class III Homeodomain Leucine Zipper (HD-ZIP) family (Sun, 2011). Evidence of targeting of two *S.lycopersicum* HD-ZIP genes was found, including one that had been validated as a target before (Moxon et al., 2008). The phytohormone auxin plays critical roles during plant growth, many of which are mediated by members of the auxin response transcription factor (ARF) family (Guilfoyle et al., 1998). Recent studies have shown that miR167 is complementary to ARF6 and ARF8 (Wu et al., 2006). Our results suggest that miR167 and the target ARFs are conserved in *S.lycopersicum* (Table 3). Increased levels of auxin accelerate proteolysis of Aux/IAA proteins, which allows ARF proteins to homodimerize and impose their transcriptional regulation by miR164. Analysis of miR164 targets TF genes (Dharmasiri and Estelle, 2002; Liscum and Reed, 2002). Our prediction shows, the A-subunit genes of the Nuclear Factor Y (NF-Y) or HAP TF and the GRAS/SCR (Scarecrow-related) TF family are targets of *S.lycopersicum* miR169 and miR171, respectively. HAP protein was shown to have an important role during nodule development in *Medicago truncatula* (Combier et al. 2006) and affects flowering time (Wenkel et al. 2006) in Arabidopsis. Moxon Simon et al. reported that, miR171 has specific role in early fruit formation. Ethylene-responsive element binding proteins (EREBPs) and APETALA2 (AP2) are prototypic members of a plant-specific family of AP2/EREBP transcription factors (Nole-Wilson and Krizek, 2000; Riechmann and Meyerowitz, 1998; Theissen and Saedler, 1999). Recent studies using *A. thaliana* showed that miR172 and its AP2-Like target genes regulate flowering time and floral organ identity (Aukerman and Sakai, 2003; Chen, 2004). Furthermore, *Glossy15*, an AP2-like gene from maize that regulates leaf epidermal cell identity, is also detected as a target of miR172 (Lauter et al., 2005). In this research, four predicted targets of miR172 were found to be members of the AP2 gene family (Table 3). Our identified Sly-miR319a sequence targets GAMYBlike gene, one of the important mediators TF in the gibberellin (GA) dependent signaling pathway. Protein phosphatase 2C is key component and repressor of the abscisic acid (ABA) signaling pathway that regulates numerous ABA responses, such as stomatal closure, osmotic water permeability of the plasma membrane (Pos), drought-induced resistance and rhizogenesis genes, response to glucose, high light stress, seed germination and inhibition of vegetative growth (Rodriguez, 1998). According to our prediction, it is found fine-tuned by Sly-miR390 and Cathepsin B-like cysteine proteinase which play an important role in intracellular protein degradation regulated by Sly-miR396. Furthermore Sly-miR482c and Sly-miR6024 were predicted to have largely similar targets among the CC-NBS-LRR (coiled coil–nucleotide binding–leucinerich repeat domain) genes that involved in pathogen recognition and biotic stress response.

Materials and Methods

Plant materials

Seeds were planted as separate groups in the same pots (20 cm × 12 cm in width and 12 cm in depth) with soil, and incubated in a growth chamber under the following standard...
Table 2. Mature, microRNA star and chromosomal location of precursor sequences for *S. lycopersicum* non reported miRNAs in miRBase.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>mature sequence</th>
<th>star sequence</th>
<th>A+U content</th>
<th>Pre-miRNA sequences</th>
<th>location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sly-miR319a</td>
<td>UUGGACUGAAG</td>
<td>GAGCUCUCCUC</td>
<td>53.00%</td>
<td>GGAGCUCUCCGGUCCAGUCCAGU CACUCAAAGCCUAAAACACAGCUA CGACUCGUUGAUUUCUCAAACAUACU CAAGACCUUUUUAUAUGGUGGUGU UUAAGAUUCAACGAUGCGUUGCCAU A GUUUUGCUCAGCUUGACGUCUUGG ACUGAAAGGGGACCCCU</td>
<td>Ch05:2723775..2723947</td>
</tr>
<tr>
<td>Sly-miR390</td>
<td>AAGCUCAGGAG</td>
<td>GCCAUCUCCAC</td>
<td>56.00%</td>
<td>AAGCUCAGGAGGGAUAGCGCCAUGGA UGACUCAAUUCAUUUUGUACAU CAUUAGCCUAACAUCCAUCUGAGAUUC A</td>
<td>Ch09 8388201..8388279</td>
</tr>
<tr>
<td>Sly-miR408</td>
<td>UGCACUGCCUC</td>
<td>ACAACACGAG</td>
<td>50.00%</td>
<td>AAAAUUGGUGUGUAGUGAUGGACUGAAGGAGCGAGGCC</td>
<td>Ch01 82800801..82802000</td>
</tr>
<tr>
<td>Sly-miR396</td>
<td>UCCACAGCUU</td>
<td>GGUCAAGAAG</td>
<td>67.00%</td>
<td>UCCACAGCUUUCUUUGUGUACUUGCAAAUACAUUUUGCAUUCCAAUUUGAU UAAUUUGGAGUGAUGUGAUGUGCCAU UAAAAGUCUAAAGAGCGUGGGAAGAA UGGGAAGCCAGGCCAGCUUGAASAUUUC UUGUAUCGCAAAAUAGCGAUAAGCACU AAUGGUAAUGCAUAGAAUUUGGACGU GUUCUCUUCCUCCCA</td>
<td>Ch07 2628771..2628873</td>
</tr>
<tr>
<td>Sly-miR164</td>
<td>UGGAGAAGCAG</td>
<td>UGCACUGUUC</td>
<td>60.00%</td>
<td>UGGAGAAGCAGGCGAGCAGCUUGAASAUUC UUGUAUCGCAAAAUAGCGAUAAGCACUAAUUGGUAAUGCAUACU AAUGGUAAUGCAUAGAAUUUGGACGU GUUCUCUUCCUCCCA</td>
<td>Ch01 81732060..817321151</td>
</tr>
</tbody>
</table>

Fig 2. Stem-loop structures for five identified miRNA precursors, red arrow indicate mature miRNAs sequences
Table 3. *S. lycopersicum* miRNAs target prediction.

<table>
<thead>
<tr>
<th>miRNAs</th>
<th>Target mRNA</th>
<th>ITAG2.3 annotation</th>
<th>Target function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sly-miR156a</td>
<td>Solyc2g077920.2.1, Solyc4g045560.2.1, Solyc5g012040.2.1, Solyc7g062980.2.1</td>
<td>Squamosa promoter binding-like protein</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR162</td>
<td>Solyc4g079470.2.1</td>
<td>Serpin</td>
<td>Serine protease inhibitor</td>
</tr>
<tr>
<td>Sly-miR164</td>
<td>Solyc7g066330.2.1, Solyc7g062840.2.1, Solyc6g069710.2.1</td>
<td>NAC domain protein</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR166a</td>
<td>Solyc12g044410.1.1, Solyc8g066500.2.1</td>
<td>Class III homeodomain-leucine zipper</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR167</td>
<td>Solyc2g037530.2.1</td>
<td>Auxin response factor</td>
<td>Hormone response</td>
</tr>
<tr>
<td>Sly-miR169a</td>
<td>Solyc1g006930.2.1, Solyc1g087240.2.1</td>
<td>Nuclear transcription factor Y</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR171a</td>
<td>Solyc1g090950.2.1, Solyc8g078800.1.1</td>
<td>GRAS family transcription factor</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR172a</td>
<td>Solyc1g072600.1.1, Solyc10g084340.1.1, Solyc9g007260.2.1, Solyc6g075510.2.1</td>
<td>AP2-like ethylene-responsive transcription factor</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR319a</td>
<td>Solyc1g009070.2.1</td>
<td>GAMYB</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR390</td>
<td>Solyc4g079120.2.1</td>
<td>Protein phosphatase 2C-related</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>Sly-miR396</td>
<td>Solyc12g088670.1.1</td>
<td>Cathepsin B-like cysteine proteinase</td>
<td>Cellulase proteolysis</td>
</tr>
<tr>
<td>Sly-miR408</td>
<td>Solyc1g104400.2.1, Solyc4g074740.2.1</td>
<td>Blue copper protein</td>
<td>Metabolic process</td>
</tr>
<tr>
<td>Sly-miR4376</td>
<td>Solyc12g006420.1.1</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>Sly-miR6024</td>
<td>Solyc11g006640.1.1</td>
<td>Cc-nbs-lrr, resistance protein</td>
<td>Pathogen response</td>
</tr>
<tr>
<td>Sly-miR482c</td>
<td>Solyc7g049700.1.1</td>
<td>Cc-nbs-lrr, resistance protein</td>
<td>Pathogen response</td>
</tr>
</tbody>
</table>

Fig 3. Expression analysis of candidate miRNAs in leaf tissue by Quantitative RT-PCR (A). Amplification products separated by gel electrophoresis on 2% agarose gel (B).

RNA was extracted from the leaves of five week old *S. lycopersicum* seedlings. Small RNA fraction between 19–24 nt was isolated from 15% denaturing polyacrylamide gel and 15 μg was ligated to adaptors without de-phosphorylating and re-phosphorylating (Rathjen et al., 2009). The short RNAs were converted to DNA by RT-PCR and the DNA was sequenced on Illumina HiSeq2000 instrument.

Data sources

General information of annotated miRNAs in *S. lycopersicum* was obtained from miRBase (http://www.mirbase.org/). Genomic sequences corresponding to the SL2.40 version and ITAG2.3_gene_models.gff3 file were downloaded from The SOL Genomics Network (http://solgenomics.net/). Ribosomal and transfer RNAs used to remove non-miRNA reads were collected from Rfam (http://www.sanger.ac.uk/Software/Rfam/), the genomic tRNA database (http://gtrnadb.ucsc.edu/) and NCBI database (www.ncbi.nlm.nih.gov/).

Identification of miRNAs

More than five million unique reads were obtained from the deeply sequenced small RNA libraries. First, all reads were aligned with the collection of Ribosomal and transfer RNAs via bowtie (allowed two nt mismatches) (Langmead et al., 2009), and unmatched sequences were proceeded to be retrieved for genomic mapping. In details, identical reads from the same sequenced small RNA libraries were collapsed and the copy number recorded. We then utilized Bowtie to...
Fig 4. Regulatory network of miRNAs in plant growth and developmental processes. miRNAs regulate plant development and stress response via their post-transcriptional control on the expression of many transcription factors and F-box proteins. This control that tunes the regulatory network of plant growth and development is an important level of regulation.

map the collapsed sequence reads into indexed *Solanum lycopersicum* genome. We only kept the reads that were perfectly mapped to the indexed genome (Bowtie parameters -a -v0) and parsed them into blast-parsed format. The same strategy was also used to map small RNA reads to the indexed annotated miRNA precursors. The secondary structures of the extracted reference sequences and annotated miRNA precursors, along with all read signature on such sequences were processed by the miRDeep-P algorithms. To identify new miRNAs, 250 bp bracketing sequences based on reads mapped to the Bowtie-indexed genome, were used to be processed with the miRDeep-P package.

Target prediction

Target genes of the *S.lycopersicum* miRNAs were predicted by psRNATarget with cDNAs available at the SOL Genomics Network (SGN) database (Dai and Zhao, 2011). Alignments between each miRNA and its putative mRNA target were evaluated based on the following criteria: 1) no more than four mismatches were allowed between the mature miRNA and its target site; 2) no more than one mismatch was allowed at nucleotide positions 1-9; 3) no more than two consecutive mismatches were allowed; 4) no mismatches were allowed at positions 10 and 11 (Xie et al., 2010).

Quantitative qPCR expression

After extraction of total RNA from *S.lycopersicum* seedling leaf tissue with TRIzol reagent, RNA was reverse transcribed using Super Script III Reverse Transcriptase (Invitrogen, US) followed by DNase treatment. miRNAs were detected using stemloop RT-PCR method (Varkonyi-Gasic et al., 2007). Stem-loop RT primers were designed according to Chen and coworker (Chen et al., 2005). Primers sequences are reported in Additional File 1. For housekeeping gene, elongation factor, cDNA was reverse transcribed using two specific reverse primers according to the same protocol as for miRNAs. For qPCR analysis, each reaction contained 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl₂, 0.1 mM dNTP mixture, 0.2 μM of each primer: a miRNA specific forward primer and a universal reverse primer (Additional File 1); 1 U of Taq DNA Polymerase Recombinant (Invitrogen), 1 μl of 20X Evagreen dye (Biotium, Inc. Hayward, CA, USA), in a final volume of 20 μl. Real time reactions were performed in a Rotor Gene 6000 (Corbett Mortlake, AUS). For data analysis we employed the “Comparative Quantitation” software supplied by Corbett Research for the Rotorgene. This method for quantitative PCR data analysis calculates the efficiencies of each transcript for each individual PCR reaction and is based on the second differential maximum method to calculate single reaction efficiencies (Rasmussen, 2001).

Conclusion

Our reliable computational analysis of miRNAs and their targets suggests that many important miRNA-target circuits are also conserved in *S.lycopersicum*. For instance, as observed in Arabidopsis (Wu et al., 2009), both miR156 and miR172, together with their SBP-like and AP2 targets, seem to be involved in the control of phase transition during *S.lycopersicum* development (Figure 4). The conservation of miR164-NAC and miR167-ARF in *S.lycopersicum* indicates that these circuits play potentially important roles in hormone signaling and stress response as was previously validated (Baker et al., 2005; Gutierrez et al., 2009). Our analysis revealed that these conserved miRNA-target circuits could merge into different developmental stages and further coordinate the whole developmental process (Figure 4).

The all-important step to understand the biological functions of miRNAs is the search for target genes. In this work, 18 miRNAs were identified from the Illumina sequencing of *S.lycopersicum* leaf samples and their potential targets were predicted, which are related to different physiological processes such as growth and development, stress defense, signaling and metabolic processes. In brief, our results indicate that, the conservation of miRNA-target circuit implies their critical role in *S.lycopersicum* growth and development.
Acknowledgements

We are grateful to Xiaozeng Yang for informatics assistance. This work was financed by the Ferdowsi University of Mashhad.

References

