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Abstract 

 

In the 21st century, advent of the omics era provides scientists with greater opportunities to dissect molecular mechanisms of cotton 

fiber development. Cotton contributes natural fiber for the worldwide textile industry; therefore, dissecting its biological properties is 

a very important scientific objective. Current Chinese scientists have made significant contributions to cotton omics, focusing on 

genomics, transcriptomics, proteomics, and metabolomics studies. Here, we review current applications to various omics in cotton, as 

well as future perspectives. 
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Introduction 

 

Cotton (Gossypium spp.) is one of the most important natural 

fiber and edible oil crops in the world. Upland cotton (G. 

hirsutum L.), with its high yield properties, accounts for about 

95% of the annual worldwide cotton production; the extra-long 

staple (ELS) or Pima cotton (G. barbadense L.), which has 

superior quality fiber properties, accounts for the other 

approximately 5%. Cotton is the leading economic crop in 

China. The Chinese cotton research community, which includes 

universities, the Chinese Academy of Agricultural Sciences 

(CAAS) and Chinese Academy of Sciences (CAS), has made 

considerable progress through common efforts. These efforts 

are not only reflected in a large number of original publications, 

but Chinese scientists are having a growing influence on the 

international research community. Indeed, among the 2,443 

research articles concentrating on Gossypium sciences listed in 

the ISI Web of Knowledge accessed database over the last 5 

years (2006-2010), 482 were contributed by Chinese scientists 

(Table 1). We have made considerable progress in structural 

genomics, such as enhancement of genetic maps, mapping of 

important economic traits or genes, and molecular-assisted 

pyramid breeding. Whole-genome sequencing of Upland cotton 

(G. hirsutum) is currently being considered by the Cotton 

Research Institute, the CAAS in combination with the Southern 

Plains Agricultural Research Center, the United States 

Department of Agriculture (USDA). Compared to genetic 

approaches, “omics” involve relatively new technologies for 

cotton in functional genomics research. In the present review, 

we focus on the major advances in cotton genomics, 

transcriptomics, proteomics, and metabolomics in the recent 

years, and discuss future prospects for Chinese cotton “omics” 

research. 

 

Cotton genetic and physical maps 

 

Genome research has been demonstrated great promise for 

continued and enhanced genetic improvement of crop plants 

(Zhang et al., 2008). Here, we summarize the major recent 

advances in cotton structural genomic research, such as genetic 

and physical maps. The development of a large number of ESTs 

(expression sequence tags) has provided a good source of 

polymerase chain reaction (PCR)-based primers for targeting 

simple sequence repeats (SSRs). Three molecular linkage maps 

from interspecific hybrid (G. hirsutum × G. barbadense) 

populations have been reported in China. We initially 

developed a large number of EST-SSR markers and constructed 

a high-density and gene-rich genetic map containing 2247 loci 

and covering 3540.4 cM, with an average inter-marker distance 

of 1.58 cM based on the BC1(TM-1 × Hai7124) population 

(Han et al., 2004, 2006; Song et al.,2005b; Guo et al., 2007, 

2008). The map will provide new insights and spur future 

investigations of functional and evolutionary genomics, 

especially those associated with cotton fiber improvement. The 

other two genetic maps were developed by incorporating 

different classes of markers at Huazhong Agricultural 

University (Lin et al., 2003, 2005; He et al., 2007) and at the 

Cotton Research Institute, the CAAS (Yu et al., 2007). Recently, 

an integrative linkage map was reported for G. hirsutum, with 

506 loci covering 3070.2 cM and a mean density of 6.5 cM per 

locus (Lin et al., 2009). In addition, we constructed the first 

A-genome diploid cotton intraspecific genetic linkage map 

consisting of 267 loci with the total length of 2508.7 cM; this 

revealed that A-genome chromosomes are largely collinear 

with A- and D-subgenome chromosomes (Ma et al., 2008a). It 

is imperative to construct physical maps based on bacterial 

artificial chromosome (BAC) for genomics research, and 

advances in molecular cytogenetic techniques will speed up 

this objective. Fluorescence in situ hybridization (FISH) using 

BAC clones as probes has commonly been applied to 

chromosome identification (Wang et al., 2006b; Wang et al., 

2007c). Based on two BAC libraries of 0-613-2R and TM-1 

(Yin et al., 2006; Hu et al., 2009), we assigned six linkage 

groups (LGs) A01, A02, A03, D02, D03 and D08 to chromo- 
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Table 1. Ranking of countries by number of articles published 

in ISI Web of Knowledge accessed database in last 5 years 

(2006-2010) with Gossypium as the main subject. 
Country            No. of publications  

USA 913 

China 482 

India 260 

Brazil  185 
Pakistan  113 

Australia 92 

Israel  79 
Egypt 76 

Uzbekistan  41 
France 34 

Belgium  32 

 

somes 13, 8, 11, 21, 24, and 19 using BAC-FISH and 

translocations, identified all 26 chromosome-pairs in tetraploid 

cotton (Wang et al., 2007c), and established 13 homeologous 

chromosome pairs using a new chromosome nomenclature 

(A1-13 and D1-13) (Wang et al., 2006b). This set of BAC 

markers enables us to make associations between chromosomes 

and their genetic linkage groups, and also provides convenient 

and reliable landmarks for establishing physical linkage with 

unknown targeted sequences. Using the same method, Wang et 

al. (2007b) detected the homoeologous (duplicated) segments 

in allotetraploid cotton, which can facilitate research in genome 

duplications and evolutionary genomics. It also will enable us 

to identify all 13 G. arboreum chromosomes simultaneously 

designated as A1-A13 through standard karyotyping using 

multiple BAC-FISH analyses (Wang et al., 2008b). A 

pachytene FISH protocol with higher axial-resolution and 

sensitivity has been developed (Wang et al., 2009b), and used 

to integrate cytogenetic and linkage maps of homoeologous 

chromosomes A12 and D12 in allotetraploid cotton (Wang et al., 

2010b). Considerable variation in genome organization, 

structure, and size between A12 and D12 homoeologous 

chromosomes was observed. We found that the distal regions 

of these chromosomes displayed relatively lower levels of 

structural and size variation than did other chromosomal 

segments. The highest level of variation was found in the 

pericentric regions in the long arms of the two homoeologs. 

The overall size difference between the A and D sub-genomes 

mainly was associated with uneven expansion or contraction 

among different regions of homoeologous chromosome pairs. 

As an initial investigation of the fate of homoeologous 

chromosomes resulting from polyploidy, these results have 

broad general implications for future sequencing and 

understanding of complex genomes in plant species. 

 

Gene tagging and QTL mapping 

 

Molecular linkage map construction has contributed greatly to 

our understanding of the evolution and organization of cotton 

genomes, but its primary purpose is to provide a common point 

of reference for locating specific genes and QTLs for 

quantitative traits (Zhang et al., 2008). The cytoplasmic male 

sterile restore fertility gene (Rf1) was the first to be tagged in 

Gossypium (Guo et al., 1997), and its location was further 

refined using a high-resolution genetic map containing 13 

markers within a genetic distance of 0.9 cM. This delimited the 

possible location of the Rf1 gene to a minimum interval of 

approximately 100 kb spanning two clones designated 081-05K 

and 052-01N (Liu et al., 2003, Yin et al., 2006). These markers 

closely linked to the Rf1 genes were used in MAS breeding to 

develop new restorer lines in our laboratory. In addition, more 

than 20 qualitative genes including Gl2
e (Dong et al., 2007), 

ob1ob2 (Qian et al., 2009), Le3Le4 (Song et al., 2009), ms5, ms6  

 
 

 

Fig 1. Regulation mechanism of cotton fiber elongation. (A) 

The signaling pathways of phytohormones. BR, brassinosteroid; 

VLCFAs, very-long-chain fatty acids; GA, Gibberellin. Solid 

lines have been confirmed by experiments; broken lines have 

no confirmation. Reference: Shi et al.,2006; Qin et al.,2007b; 

Mei et al., 2010; (B) The pectin biosynthesis network. Glc-1-P, 

Glucose 1-phosphate; UDP-GalA, UDP-D-galacturonic acid; 

UDP-Rha, UDP-L-rhamnose. References: Xu et al., 2007; Gou 

et al., 2007; Pang et al., 2010. 

 

and ms15 (Chen et al., 2009), R1 (Zhao et al., 2009), N1 and n2 

(Song et al., 2010) and Fw (Wang et al., 2009a) have been 

tagged in this laboratory (Table 2). Important QTLs related to 

cotton productivity and properties, including fiber quality, 

overall yield and related characteristics, and resistance to 

diseases and insects, have been tagged (Table 2). We have 

uncovered an unequal distribution of QTLs between the 

A-subgenome (hereafter At) and D-subgenome (hereafter Dt). 

QTLs for fiber quality and yield more often map to Dt than At 

intraspecific mapping populations (Shen et al., 2005, 2006, 

2007; Wang et al., 2006c, 2007d; Qin et al., 2008b); however, 

using interspecific mapping populations, more QTLs for fiber 

quality, particularly for fiber length and strength, were detected 

on At than Dt chromosomes (He et al., 2007; 2008b). Zhang et 

al. (2003) detected eight molecular markers linked with a major 

FS QTL (QTLFS1) that explained more than 30% of the 

phenotypic variation in a G. anomalum introgression line 7235. 

This major QTL was stable in comparative mapping of RIL and 

F2 populations (Shen et al., 2005, 2006, 2007) and was 

efficiently used in MAS breeding to improve fiber strength 

(Guo et al., 2003). In order to fine-map this QTL, three 

overlapping RILs, developed from a cross between 7235 and 

TM-1, were backcrossed to TM-1 to produce three large 

mapping populations. Surprisingly five tightly linked and/or 

clustered QTLs were detected that overlapped our previously 

identified major QTL region (Chen et al., 2009b). These five 

QTLs act like a major QTL, perhaps representing a single 

major gene for fiber strength, explaining a total phenotypic 

variance of 28.8% ~ 59.6%. A similar QTL cluster also was 

discovered for Verticillium wilt resistance on D7 (Wang et al., 

2008a; Jiang et al., 2009). Using three elite fiber lines of 

Upland cotton, three pairs of homoeologous QTLs were 

detected (Shen et al., 2005). Similar homoeologous QTLs for 

FS on A8/D8 also were reported (Zhang et al., 2005; He et al., 

2007). Most important QTLs for different traits have been 

found clustered in the same interval or in neighboring intervals. 

For example, Wang et al. (2006c, 2007d) tagged a stable fiber 

length QTL on D2; however, they simultaneously detected five 

significant QTLs for fiber strength, micronaire, reflectance, 

yellowness and maturity in four environments in Xiangzamian2  
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Table 2. Progress of gene tagging and QTL mapping for important traits in cotton. 
Traits/genes  Parental materials  References 

Rf1 fertility-restoring gene1 (Zhongmiansuo12 A-1 × 0-613-2R) F2 Guo et al., 1997 

Rf1 fertility-restoring gene1 CMS and the restoring lines Liu et al., 2003 

Rf1 fertility-restoring gene1  XiangyuanA, ZMS12A and  

Sumian 16A × 0-613-2R 

Yin et al., 2006 

Glandless gene (Gl e2)1 (TM-1 × Hai1) F2 * Dong et al., 2007 

Red plant gene (R1)
1 (Sub 16 × T586) F2* Zhao et al., 2009 

Hybrid lethality genes(Le3Le4)
1 (TM-1,N1FLM and n2 FLM  

× Coastland R4-4)F2 /BC1* 

Song et al., 2009b 

Open-bud duplicate genes (ob1ob2)
1 (TM-1 × Hai7124)F2* and 

(Sub18 × Hai7124 and 3–79) F2 

Qian et al., 2009 

Male-sterile genes (ms5,ms6and ms15)
1 (Lang-A and Zhongkang-A ×  

Hai7124) F2 /BC1* 

Chen et al., 2009a 

Fusarium wilt resistance gene (Fw)1 Zhongmiansuo 35 × Junmian 1 Wang et al., 2009a 

Fuzzless genes (N1and n2)
1 (N1/n2 FLM × TM-1, Hai7124, 

Xinhai 7 and Junhai 1) F2 /BC1* 

Song et al., 2010 

Fiber strength1 (7235 × TM-1) F2 and F3  Zhang et al.,2003 

Fiber strength1 (7235 × TM-1) F2  Guo et al., 2003 

Fiber quality1  7235, HS427-10, PD6992 and 

TM-1 × SM3  

Shen et al., 2005 

Fiber quality and yield1 (7235 × TM-1) RILs Shen et al., 2006 

Fiber quality and yield1 (7235 × TM-1) RILs Shen et al., 2007 

Fiber strength1 (7TR-133, 7TR-132, and 7TR-214   

× TM-1) F2 and F2:3 

Chen et al., 2009b 

Fiber quality and yield1 (Simian 3 × Sumian 12) ×  

(Zhong4133 × 8891) 

Qin et al., 2008 

Fiber qualities and yields 1 Jianglingzhongmian ×  

Zhejiangxiaoshanlushu 

Ma et al., 2008 

Leaf morphology and chlorophyll content1 (TM-1 × Hai7124) BC1* Song et al., 2005a 

Seed physical and nutrient traits1 (TM-1 × Hai7124) BC1* Song et al., 2007 

Plant architectural traits1 (TM-1 × Hai7124) BC1* Song et al., 2009c 

Plant architecture traits1 (Zhongmiansuo 12 × J8891) RILs Wang et al., 2006a 

Fiber quality traits1  (Zhongmiansuo 12 × J8891) RILs Wang et al.,2006c 

Yield and yield-component traits1 (Zhongmiansuo 12 × J8891) RILs Wang et al., 2007a 

Fiber quality1  (Zhongmiansuo 12 × J8891) RILs Wang et al., 2007d 

Resistance to Verticillium wilt1 (Hai7124 × Junmian 1) F2 and BC1* Yang et al., 2008a 

Resistance to Verticillium wilt1 (60182 × Junmian 1) F2  Jiang et al., 2009 

Fiber quality 2 Handan 208 × Pima90* Lin et al., 2005 

Fiber yield2 Handan 208 × Pima90* He et al., 2005 

Fiber quality and yield2 ( Handan 208 × Pima 90) F2:3 * He et al., 2007 

Fiber quality2  Handan 208 × Pima 90* He et al., 2008b 

Resistance to Verticillium wilt2 (XinLuZao 1 × Hai7124) F2:3 * Wang et al., 2008a 

Lint percentage and fiber quality traits3 (Yumian 1 × T586) F2 and F2:3  Zhang et al., 2005 

Lint percentage, fiber quality and spiny 

bollworm3  

(Yumian 1 × T586) F2 and F2:3  Wan et al., 2007 

Fiber strength3 (CRI 8 × Pima90-53) F2 
* Liu et al., 2009 

1Published from Cotton Research Institute, Nanjing Agricultural University (CRI, NAU); 2from Huazhong Agricultural University 

(HAU); 3from other Universities. *Interspecific cross.  

 

 

(ZMS 12 × J8891). This result was confirmed through further 

analyses (He et al., 2007, Qin et al., 2008b). Moreover, 

clustered QTLs for seed cotton and lint yield, specific yield 

components such as lint index, boll size, seed index, as well as 

fiber strength and micronaire, also were detected on D8 (Shen 

et al., 2006, 2007). These results indicate that genes controlling 

fiber development and yield can be linked, or that they are 

likely to be pleiotropic, resulting in negative relationships 

between fiber and yield components that cause complications 

for plant breeders.  

 

Transcriptome analyses of fiber development 
 

Cotton fiber is an excellent model for cellular development 

and elongation, which occurs in four overlapping stages: 

initiation, elongation, secondary cell wall (SCW) synthesis and 

maturation (Basra and Malik, 1984; Kim and Triplett, 2001). 

Cotton fiber initiation stage acts as a developmental switch to 

determine the number of fibers on each ovule, whereas the rate 

and duration of cell elongation/expansion determine fiber 

length, and the duration of SCW affects fiber strength and 

fineness (Smart et al., 1998; Ruan et al., 2001). Therefore, 

cotton fiber transcriptomics mostly focus on functional 

identification of crucial genes for improving fiber yield and 

quality. To date, many specifically or preferentially expressed 

genes have been identified in fiber (Table 3). Transcription 

factors play essential roles in cotton fiber initiation. Previous 

findings illustrate that complex networks 

(MYB–bHLH–WD40) control Arabidopsis trichome cell fate 

(Ramsay and Glover, 2005). The initiation of cotton fiber cells 
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was found to be developmentally similar to that of Arabidopsis 

trichomes (Guan et al., 2007). Therefore, identification of 

comparable transcription factors in cotton is very important for 

dissecting fiber initiation mechanisms. Functional analyses 

have demonstrated that GaMYB2, GaRDL1, GaHOX1 and 

GhMYB109 play essential roles in the regulatory networks 

during cotton fiber initiation (Wang et al., 2004; Shangguan et 

al., 2008; Guan et al., 2008; Pu et al., 2008). Because cotton 

fiber is an excellent general model for cell elongation, the 

elongation phase is perhaps the best-studied period of fiber 

development (Kim and Triplett, 2001). Several cDNA libraries 

derived from ovules, fibers and other tissues from cultivated 

tetraploid cotton were constructed (Ji et al., 2003; Liu et al., 

2006; Shi et al., 2006; Tu et al., 2007; Gou et al., 2007). Using 

a PCR-selected cDNA subtractive analysis and differential 

screening, 172 differentially expressed genes were identified 

between Xuzou142 fiber and fuzzless-lintless during fiber 

elongation (Ji et al., 2003); 292 preferentially expressed genes 

were identified between 10 and 20 days post anthesis (DPA) in 

fiber cells and non-fiber tissues (Liu et al., 2006), and 645 

were identified between different stages of Pima3-79 ovules or 

fibers (Tu et al., 2007). A recently identified small regulatory 

RNAs, miRNAs are also differentially expressed during cotton 

fiber development (Zhang and Pan, 2009; Zhang et al., 2007). 

With implementation of large-scale EST sequencing, fiber 

elongation was studied using high-throughput DNA 

microarray platforms (Shi et al., 2006; Gou et al., 2007; Pang 

et al., 2010b). Shi et al. (2006) reported a 12K cDNA 

microarray platform (GEO accession: GPL2610) containing 

11,962 uniESTs from 5-10 DPA Xuzhou142 fibers. They were 

the first to demonstrate that ethylene plays an essential role in 

promoting fiber cell elongation by activating fiber-specific 

genes, such as SUS, EXP1, EXP2, and TUB1 that are 

important for cell wall biosynthesis, wall loosening and 

cytoskeleton rearrangement. Qin et al. (2007b) further 

demonstrated that very-long-chain fatty acids (VLCFAs) 

promote cotton fiber and Arabidopsis cell elongation by the 

activating ethylene biosynthesis gene ACOs. The GhAPX1 

gene has been shown to be involved in hydrogen peroxide 

(H2O2) homeostasis during cotton fiber development; H2O2 

production is promoted by ethylene, and H2O2 induce ethylene 

production by a feedback regulatory mechanism, which 

together modulate cotton fiber development (Li et al., 2007; 

Qin et al., 2008a). Additionally, Luo et al. (2007) 

demonstrated that the steroid 5d-reductase (GhDET2) plays a 

crucial role in the initiation and elongation of cotton fiber cells, 

and that modulation of brassinosteroid (BR) biosynthesis 

factors can improve fiber quality or yield. It also was shown 

that gibberellin (GA) 20-oxidase (GhGA20ox1-3) promotes 

initiation and elongation of cotton fibers by regulating GA 

synthesis (Xiao et al., 2010). Based on this research on 

biosynthesis and signaling pathways, Mei et al. (2010) 

suggested a novel molecular mechanism of interactions among 

ethylene, BR, GA, H2O2 and VLCFAs during fiber cell 

elongation (Fig. 1A). In addition to biosynthesis of various 

phytohormones, fast polarized growth of a cotton fiber cell 

requires biosynthesis of plasma membrane and cell wall 

components, along with cell wall loosing and expansion. 

Functional analyses demonstrated that several genes related to 

the cytoskeleton (GhTUB1, GhWBC1, GhPFN1, GhACT1, 

GhTUA9 and GhTUBs) and four genes related to cell wall 

biosynthesis or cell expansion (GhRLK1, GhGlcAT1, GhPEL, 

and GhATPδ1) play important roles in fiber elongation (Table 

3). Gou et al. (2007) constructed a 5K cDNA array (GPL3641) 

covering 5,122 unique ESTs from a cDNA library of G. 

hirsutum L. cv. Xuzhou142 using -3 to 5 DPA ovules and 6-24 

DPA fibers. They identified 633 differentially regulated genes 

during cell elongation and SCW synthesis, which indicated 

that auxin signaling, wall-loosening and lipid metabolism are 

highly active during fiber elongation, whereas cellulose 

biosynthesis is predominant in the SCW synthesis stage. 

Recently Pang et al. (2010b) reported a new cotton 32K cDNA 

microarray (GPL5476) containing 31,401 UniESTs. 

Large-scale cotton EST sequencing also provides a powerful 

platform for predicting microRNAs, which will increase our 

understanding mechanistic roles in regulating fiber 

development. Qiu et al. (2007) used bioinformatics approaches 

to identify microRNAs and their targets from the G. hirsutum 

ESTs database in NCBI, and Kwak et al. (2009) further 

enriched a set of microRNAs for fiber development. However, 

the role of small RNAs, especially microRNAs, in cotton fiber 

cell development is under-explored. 

 

Transcriptome analyses of stress resistance 
 

Both cotton growth and yield are severely inhibited by biotic 

and abiotic stresses. The complex stress response mechanism of 

cotton is being unraveled through the identification of stress 

response protein-encoding genes. Mao et al. (2007) made a 

major breakthrough, using RNA interference (RNAi) to 

improve stress resistance. They identified a cytochrome P450 

gene (CYP6AE14) from cotton bollworm and silencing 

CYP6AE14 by plant-mediated RNAi can impair larval 

tolerance of gossypol. It is reasonable to expect that, in the 

future, plant-mediated RNAi will be useful in producing 

transgenic cottons that are resistance to insects. Many 

differentially expressed ESTs involved in the defense response 

to Verticillium wilt have been identified (Zuo et al., 2005; Zhu 

et al., 2005; Gao et al., 2006). Ethylene-responsive element 

binding factors (ERFs/EREB) are plant-specific transcription 

factors, many of which could play dual roles in biotic and 

abiotic stresses. Meng et al. (2010) reported that the EREB1 

gene might play an important role in V. dahliae stress signal 

transduction pathways by activating pathogenesis-related genes. 

Yang et al. (2010) reported cytochrome P450 reductase 

(GhCPR2) transcription was induced dramatically by V. dahliae 

elicitor in suspension culture of cotton cells, and was more 

related to defense reactions. Further studies should be 

performed to clarify the role of the GhCPR2 response to V. 

dahliae. These genes could facilitate breeding of V. 

dahliae-resistant cotton varieties in future. Molecular studies of 

abiotic stresses will be helpful for improving tolerant cotton 

varieties. Ethylene-responsive factor genes (GhERF1-4,6) were 

isolated from Upland cotton responses to multiple abiotic 

stresses (Jin and Liu, 2008; Qiao et al., 2008; Jin et al., 2010). 

Two other gene family were identified that respond to abiotic 

stresses, including nineteen novel cotton fasciclin-like 

arabinogalactan protein genes related to salt stress (Huang et al., 

2008b) and six novel NAC genes that respond to drought, cold 

and ABA stress (Meng et al., 2009). GhDBP2 (DRE-binding 

protein) was involved in responses to environmental stresses as 

well as ABA treatment (Huang et al., 2008a). Recently, Xue et 

al. (2009) reported that accumulation of mRNA for a 64-amino 

acid type 3 metallothionein protein (GhMT3a) up-regulated by 

ABA, ethylene and reactive oxygen species (ROS) in cotton 

seedlings, indicating that GhMT3a could function as an 

effective ROS scavenger and that its expression could be 

regulated by abiotic stresses through ROS signaling. These 

results have helped to deepen our understanding of the 

molecular mechanisms of cotton resistance stress, and they 

identify candidate genes for improving cotton resistance and/or 

increased tolerance to stress via genetic engineering strategies. 
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Table 3. A survey of cotton fiber specifically or preferentially expressed genes. 
Stages  Gene name Putative functions during cotton fiber development References 

Fiber initiation GaMYB2(FIF1) Predominantly expressed early in the development of cotton fibers; and 
rescued the trichome formation of Arabidopsis gl1 mutant. 

Wang et al., 2004; Shangguan et al., 
2008 

 GaRDL1 Contains a homeodomain binding L1 box involved in activating the 

RDL1-P3 promoter in Arabidopsis trichomes, and RDL1 was expressed 

mainly in developing fiber cells. 

Wang et al.,2004 

 GaHOX1 GaHOX1 is predominantly expressed in cotton fiber cells at early 

developmental stages, and is a functional homolog of GL2 in plant trichome 

development. 

Guan et al., 2008 

Initiation& 

elongation 

GhMYB109 GhMYB109 is specifically expressed in cotton initial and elongating fibers 

and revealed a largely conserved mechanism of the R2R3 MYB 

transcription factor in cell fate determination in plants. 

Suoet al.,2003;Pu et al., 2008 

 GhDET2 GhDET2 plays a crucial role in the initiation and elongation of cotton fiber 

cells. 

Luo et al., 2007 

 GhFLA1 

 GhAGP2,3,4 

The FLAs are essential for the initiation and elongation of cotton fiber 

development. 

 

Liu et al., 2008; Li et al., 2010 

 GhGA20ox1-3 GhGA20ox1 is expressed preferentially in elongating fiber, while 

GhGA20ox2-3 transcripts accumulate mainly in ovules; they promote 

initiation and elongation of cotton fiber by regulating gibberellins synthesis. 

Xiao et al., 2010 

Fiber elongation GhKCR1-2 Encoding 3-ketoacyl-CoA reductases, and preferentially expressed during 

cotton fiber elongation, GhKCR1 and GhKCR2 play an important role in 

very long chain fatty acids biosynthesis. 

Qin et al., 2005 

 GhKCS13/CER6 Encoding 3-ketoacyl-CoA synthase, involved in VLCFAs (very-long-chain 

fatty acids) biosynthesis; VLCFAs promote cotton fiber and Arabidopsis cell 

elongation by activating ethylene biosynthesis. 

Qin et al., 2007a, 2007b 

 GhECR1-2 Encoding trans-2-enoyl-CoA reductase (ECR), and has    up-regulated 

expression during fiber elongation, involved in fatty acid elongation during 

cotton fiber development. 

Song et al., 2009a 

 GhAPX1 GhAPX1 has up-regulated expression in response to an increase in cellular 

H2O2 and ethylene, and encodes a functional enzyme involved in hydrogen 

peroxide homeostasis during fiber development. 

Li et al., 2007; Qin et al., 2008a 

 GhWBC1 Encodes an ATP-binding cassette transporter of the WBC subfamily with 

highly expression in developing fiber cells, and over-expressed GhWBC1 

interferes with Arabidopsis seed and silique development. 

Zhu et al., 2003 

 GhACT1 Encodes an actin and is involved in fiber elongation, but not in fiber 

initiation. 

Li et al., 2005a 

 GhTUB1 Encoding β-tubulin, and preferentially accumulating at high levels in fiber, 

may play a distinct and required role in fiber development. 

Li et al., 2002 

 GhTUBs Nine GhTUBs were highly expressed in elongating fiber cells as compared 

with fuzzless-lintless mutant ovules, and were induced by gibberellin, 

ethylene, brassinosteroids, and lignoceric acid. 

He et al., 2008a 

 GhTUA9 GhTUA9 gene is specifically expressed in fiber and involved in cell 

elongation. 

Li et al., 2007 

 GhPFN1 May be involved in the rapid elongation of cotton fibers by promoting actin 

polymerization. 

Wang et al., 2005 

 Gh14-3-3L Gh14-3-3L is predominantly expressed during early fiber development, and 
reaches peak of expression in 10 DPA fiber cells involved in regulating 

fiber elongation. 

Shi et al., 2007; Zhang et al., 2010 

 GhBG GhBG is highly abundant in 5-17 DPA fiber and can lead to a significant 
increase in cell length and width when transformed into yeast. 

Ma et al., 2006 

 GhPEL Encoding a pectate lyase, may block cell wall loosening by 
depolymerization of de-esterified pectin during fiber elongation. 

Wang et al., 2010a 

 GhEF1As Translation elongation factor 1A-1, 2, 4, 5 and 9 active at the early fiber 

elongation. 

Xu et al., 2007 

 GhATPδ1 GhATPδ1 (ATP synthase δ1 subunit) is important for activity of 

mitochondrial ATP synthase, probably relates to fiber elongation. 

Pang et al., 2010a 

 GhGS GhGS is differentially expressed between 7235 and TM-1 at 8 DPA fibers, 

significantly correlated with fiber strength QTL on D7. 

He et al.,2008c 

Elongation & 

SCW 

GhGlcAT1 GhGlcAT1 may be involved in non-cellulose polysaccharides biosynthesis 

of the cotton cell wall. 

Wu et al., 2005, 2007   GhRLK1 GhRLK1 is expressed in fast-elongation and the transition stage of 

elongation and SCW, and involve in the induction and maintenance of 

active fiber secondary wall formation. 

Li et al., 2005b 

 

Proteome analyses of fiber development 
 

Gene expression at the mRNA level does not reveal exact 

functions of genes in cells; therefore, direct research on protein 

expression patterns and functional models has become an 

inevitable trend in life sciences. The term proteome was coined 

to describe the set of proteins encoded by a given genome 

(Wilkins et al., 1996). Protein profiling is one of the important 

recent developments in proteomics; it offers multiple 

advantages and complements other functional genomics 

approaches such as transcript profiling. After an extraction 

protocol for 2-D electrophoresis (2-DE) was optimized (Yao et 

al., 2006),  a proteomic analysis of cotton fibers during  cell  

 

 

 

elongation was conducted (Yang et al., 2008). It identified 

differentially expressed proteins from mass spectrometry, 

which match 66 unique protein species involved in different 

cellular and metabolic processes, with obvious functional 

tendencies toward energy/carbohydrate metabolism, protein 

turnover, cytoskeleton dynamics, cellular responses and redox 

homeostasis. This provides a global view of the 

development-dependent protein changes in cotton fibers, and 

offers a framework for further functional research that targets 

proteins associated with fiber development. Using a 

comparative proteomics approach, Pang et al. (2010) identified 

104 proteins from 10 DPA cotton ovules, with 93 preferentially 

accumulating in the wild-type and 11 accumulating in the 
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fuzzless-lintless mutant, and identified nucleotide sugar 

metabolism as the most significantly up-regulated biochemical 

process during fiber elongation. Seven protein spots potentially 

involved in pectic cell wall polysaccharide biosynthesis 

specifically accumulated in wild-type samples at both protein 

and transcript levels. Comparative proteomics indicate that 

biosynthesis of pectic precursors is important for cotton fiber 

and Arabidopsis root hair elongation (Fig. 1B). Zhao et al. 

(2010) identified 81 differentially expressed proteins from 

Ligon lintless (Li1) fibers assigned to different functional 

categories through 2-DE combined with local EST 

database-assisted MS/MS analysis; 54 of these proteins were 

down-regulated and 27 up-regulated. Of these, over half of the 

down-regulated proteins are mainly involved in protein folding 

and stabilization, nucleocytoplasmic transport, signal 

transduction, and vesicular-mediated transport and a number of 

cytoskeleton-related proteins showed a remarkable decrease in 

protein abundance in the Li1 fibers. Accordingly, the 

architecture of the actin cytoskeleton was severely deformed 

and microtubule organization was moderately altered, 

accompanied by dramatic disruption of vesicle trafficking. By 

contrast, the expression of several proteins involved in 

unfolded protein response was activated in Li1 fibers, which 

indicated that the deficiency of fiber cell elongation was related 

to endoplasmic reticulum (ER) stress. Collectively, these 

findings significantly enhance our understanding of 

mechanisms associated with cotton fiber elongation. 

 

Future prospects 
 

In recent decades, new tools of transcriptome analysis in China 

have been applied to cotton including cDNA-amplified 

fragment length polymorphism (cDNA-AFLP) (Pan et al., 2007; 

Liu et al., 2009; Zhu et al., 2009), microarrays (Shi et al., 2006; 

Gou et al., 2007), and next-generation sequencing (NGS). 

cDNA-AFLP is a PCR-based transcript profiling technology 

that does not require any prior knowledge of gene sequences, 

and combines the advantage of high specificity with the 

capability of detection of rare transcript tags; therefore, its 

sensitivity is higher than that of hybridization-based techniques. 

Conversely, the strength of microarrays lies in their massive 

parallel nature, allowing the simultaneous analysis of up to tens 

of thousands of genes. Recently, superior, higher capability 

genome-wide NGS platforms (e.g. Roche (454), Illumina and 

SOLiD) have been developed, and presumably will accelerate 

advances in genomics and transcriptomics dramatically 

(Shendure et al., 2008). NGS should become inexpensive, 

routine and widespread for studies of the genomes and 

transcriptomes in the near future. In reviewing the status of 

cotton omics, it is clear that Chinese scientists have made 

significant progress in fields of constructing genetic maps, 

genes or QTL mapping, transcriptome analysis of fiber, despite 

the fact that our omics research was launched later than in 

developed countries. Nevertheless, many efforts are needed to 

further develop omics resources and approaches in order to 

fully and effectively use them in cotton genetic improvement 

and biological research. In particular, the following areas of 

cotton omics research should be emphasized.  

 

Transcriptomics, proteomics and metabolomics 

 

The attractiveness of cotton as a model of single cell 

development has been acknowledged, and efforts are underway 

worldwide to elucidate genetic features that are key to 

generating superior fiber species. In the post-genomic era, 

various studies have focused on connecting gene function and 

gene expression with resulting phenotype through complex 

networks of DNA → RNA → protein → metabolite → 

phenotype. A large number of studies have demonstrated that 

cotton fiber development involves complex molecular 

mechanisms, and cotton fiber cell activities require complex 

patterns of gene transcription, protein expression as well as 

related metabolic pathways. Therefore cotton proteomics and 

metabolomics are important directions for post-genomics 

cotton research aimed at understanding molecular mechanisms 

of cotton fiber development, because they bridge roles between 

gene expression and phenotype. Using the NGS technology for 

RNA profiling, we can discover more and novel tags that are 

differentially expressed. Thus, in order to dissect cotton fiber 

developmental mechanisms more deeply, continued efforts 

should be made in transcriptomics, proteomics and 

metabolomics. 

 

Integrating omics 

 

Future directions also will include the integration of different 

omics in cotton fiber development. The trend in biological 

investigations is shifting from individual omics toward 

integrated omics and system biology. Integration of molecular 

profiling technologies into plant developmental biology has just 

begun, and many exciting developments can be anticipated in 

the near future (Hennig, 2007). Gou et al. (2007) have 

developed a preliminary transcriptome integrated with 

metabolome in cotton fiber development studies, and 

demonstrated that signaling and metabolic pathways are 

coordinated to promote cell elongation in the early stage and to 

support cellulose synthesis in later stages. Therefore, with 

high-throughput data acquisition by genomic projects, it is 

possible and necessary to better integrate multi-omics 

technologies and systems approaches that will generate many 

intriguing insights into cotton fiber development. 

 

Quantitative gemomics 

 

Quantitative genetics in the age of omics will expand in cotton. 

Genetical genomics, which combines genetics with large scale 

expression profiling to provide expression QTLs (eQTLs), has 

been applied in Arabidopsis, maize, and barley (Druka et al., 

2010). Similar approaches can be followed with data derived 

from other “omics” technologies such as proteomics (pQTLs) 

and metabolomics (mQTLs) (Keurentjes et al., 2008; Joosen et 

al., 2009). Genetic regulatory networks have shown the 

usefulness of combining quantitative genetics and large-scale 

omics analyses (Keurentjes et al., 2007, 2008). Using these 

approaches, we will be able to integrate genetic, transcriptomic, 

proteomic and metabolomic data (eQTL, pQTL and mQTL) to 

understand molecular mechanisms and constructing regulatory 

networks that underlie complex cotton fiber qualities. 

 

Genomics-assisted breeding 

 

With various current and developing “omics” technologies, 

marker-assisted breeding and selection will gradually evolve 

into genomics-assisted breeding for crop improvement. 

Eventually, knowledge of the relative values of alleles at all 

segregating loci in a population could allow the breeder to 

design a genotype in silico and to practice whole genome 

selection (Varshney et al., 2005). The Upland cotton genome 

sequencing project can be enhanced through the use of NGS 

technology, which will enable us to discovery a large number 

of single-nucleotide polymorphisms (SNPs) within whole 

genome sequences or large genomic fragments in BACs that 

can be applied to genome-wide association (GWS) study as in 

Arabidopsis (Atwell et al., 2010). This can help to identify 
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genetic loci or genes associated with traits of agricultural 

importance. Genomics-assisted breeding will be an effective 

approach to overcoming the bottlenecks of conventional 

breeding practices, through the integration of germplasm 

resources, genetic and genomic resources, and multiple omics 

tools and strategies. Ultimately this will lead to improvements 

in cotton fiber yield, quality and pest resistance. 
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