PLANT OMICs

Encompassing plant and animal OMICs


MtNOOT gene enhanced high productivity and economical characteristics of tomato (Lycopersicon esculentum)

Ghada Ahmed Abu El-Heba*

Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza, Egypt

Abstract
Tomato (Lycopersicon esculentum) is the main vegetal crop that has tremendous popularity around the world. Medicago truncatula NOOT gene (Mt-NOOT) encodes a BTB/POZ-ankyrin repeat protein of the NONEXPRESSOR OF PR GENES1 (NPR1 family). It was introduced into Lycopersicon esculentum (Tomato) genome. The tomato plants that ectopically expressed Mt-NOOT obtained several favorable traits and fruit quality. Heteroblasty between the transgenic and the non-transgenic tomato leaves and flower architecture were used to distinguish transgenic and wild lines. Transgenic tomato plants accumulated a significant amount of phenolic compounds and plant pigmentations compared to the wild type. On the other hand, transgenic plants acquired a considerable amount of antioxidant such as CuZnSO superoxide dismutase (SOD), tomato Catalase (CAT), and tomato Cell wall-associated peroxidase (TPX1) than the wild type. Antioxidant high content together with the high content of phenolic compounds enabled the transgenic tomato fruits to gain not only edible benefits, but also a significant higher shelf-time, extended to six months more than the wild type stored at 25°C in dark and dry condition. Surprisingly, transgenic tomato fruits did not show any rotten process during long time storage as they did not acquire any contagious microorganism. Total fruit productivity in transgenic tomato was greater than the control with an estimated ratio of 84%.

Pages 1-10 | Full Text PDF | Supplemntary PDF | doi: 1021475/POJ.14.01.21.p3141