Plant Omics Journal

POJ 5(4):365-371 (2012)

Supplementary Data

Differentially expressed proteins in sugarcane leaves in response to water deficit stress

Ni-on Ngamhui¹, Chutipong Akkasaeng^{1*}, Yun J. Zhu^{2&}, Nathpapat Tantisuwichwong³, Sittiruk Roytrakul⁴, and Taksina Sansayawichai⁵

Supplementary table 1. Identification of water stress-responsive proteins in sugarcane leaves (cv. Khon Kaen 3). The proteins were identified by LC-ESI-IT-MS/MS and the Mascot and OMSSA search engines.

Spot	Magnitude of change (fold)	Experiment		Theoretical		Protein accession			Mascot			OMSSA	
number		pI	M_{r}	pI	M_{r}	numbers	Protein homologs	Species	Score	Hits	Cov (%)	Hits	E-value
							Photosynthesis						
D02	1.6	4.86	33	5.5	30	gi 162461137	chlorophyll a/b-binding apoprotein CP26 precursor	Zea mays	185	4	11	1	2.44E-03
U04	1.6	6.0	27	5.84	27	gi 75265661	Chlorophyll a-b binding protein 1B-21, chloroplastic	Hordeum vulgare	107	2	5	1	7.48E-07
U07	1.9	6.93	29	5.59	35	gi 195619530	oxygen-evolving enhancer protein 1	Zea mays	368	7	11	1	2.14E-08
U12	1.3	5.28	63	5.31	54	gi 75324213	ATP synthase subunit beta, chloroplastic (EC=3.6.3.14)	<i>Saccharum</i> hvbrid	528	17	35	10	1.58E-04 to 3.25E-09
U13	1.5	5.48	63	5.31	54	gi 48478778	ATP synthase CF1 beta subunit (EC=3.6.3.14)	Saccharum hybrid	1,373	26	50	24	2.86E-05 to 1.08E-14
U14	1.4	5.84	64	5.87	56	gi 90110817	ATP synthase subunit alpha, chloroplastic (EC=3.6.3.14)	<i>Saccharum</i> hybrid	544	9	21	6	3.28E-3 to 8.66E-10
U15	1.6	6.03	64	5.87	56	gi 90110817	ATP synthase subunit alpha, chloroplastic (EC=3.6.3.14)	<i>Saccharum</i> hybrid	549	9	21	6	1.72E-03 to 6.89E-09
							Defense						
D01	2.0	5.16	23	6.47	24	gi 54299342	heat shock protein hsp22 precursor, mitochondrial	Zea mays	44	1	4	1	1.54E-02
U01	3.8	6.19	18	6.77	17	gi 226504442	16.9 kDa class I heat shock protein 1	Zea mays	113	2	14	1	2.10E-01
U02	1.4	4.98	19	5.31	19	gi 269993586	chloroplastic Cu/Zn superoxide dismutase (EC=1.15.1.1)	Zea mays	230	3	21	1	1.54E-02

ISSN:1836-3644

Supple	mentary table	1. (contin	nued)										
Spot	Magnitude	Experi	ment	nent Theoretic		Protein			Mascot			OMSSA	
number	of change (fold)	pI	$M_{\rm r}$	pI	$M_{\rm r}$	accession number	Protein homolog	Species	Score	Hits	Cov (%)	Hits	E-value
U05	1.6	6.37	28	7.11	25	gi 162461288	superoxide dismutase [Mn] 3.1, mitochondrial precursor (EC=1.15.1.1)	Zea mays	61	1	6	1	5.83E-03
U06	1.5	6.13	28	6.71	25	gi 212722004	superoxide dismutase [Mn] 3.4, mitochondrial precursor (EC=1.15.1.1)	Zea mays	282	5	23	5	1.32E-03 to 3.80E-08
U03	1.3	4.72	26	5.81	28	gi 195626524	2-cysteine peroxiredoxin BAS1	Zea mays	154	3	11	1	9.63E-03
U09	2.1	6.67	44	6.27	35	gi 17297979	26S proteasome regulatory particle non-ATPase subunit8	<i>Oryza sativa</i> Japonica Group	153	2	7	1	1.42E-04
U10	1.7	5.76	55	6.07	53	gi 226508704	elongation factor Tu	Zea mays	173	2	6	1	1.54E-10
U11	2.5	5.90	55	5.07	50	gi 226508704	elongation factor Tu Miscellaneous	Zea mays	112	3	5	1	2.27E-07
D03	1.6	5.10	41	5.11	54	gi 11583	ATPase, beta subunit	Hordeum vulgare	70	1	3	1	1.17E-11
D04	1.6	5.0	50	6.07	50	gi 226530482	phosphoglycerate kinase (EC 2.7.2.3)	Zea mays	160	2	5	1	4.98E-05
U08	1.2	5.41	40	5.69	33	gi 162461348	Isoflavone reductase homolog IRL(EC=1.3.1)	Zea mays	228	3	11	1	1.88E-06

Criteria: M_r: molecular weight; pI: isoelectric point; Species: organism in which the protein has been identified; Score: identified score obtained with Mascot; Hits: the number of MS/MS spectra that were matched to an orthologous protein; Cov (%): percentage of orthologous protein sequence coverage obtained with the Mascot-identified peptides; Evalue: a significant hit in OMSSA.

Mascot website: http://www.matrixscience.com/search_form_select.html OMSSA website:http://pubchem.ncbi.nlm.nih.gov/omssa/index.htm

Supplementary fig 1. The reproducibility of the protein separation using 2-DE. Proteins from plants with an adequate water supply (Upper row) and from water-stressed plants (lower row) were separated into three replicates (column1 to column 3). Proteins with known molecular weight were also separated in each gel and are shown on the left-hand side of each gel.

Supplementary fig 2. Image analysis of proteins in 2-DE gels. Proteins from sugarcane leaves under adequate water supply (upper row) or water stress (lower row) were separated into three replicates (I, II and III). Four proteins (U01-U04) were down- and fifteen proteins (U01-U15) up-regulated.

D01

D02

D03

D04

Supplementary fig 3. Two- and three-dimensional views of proteins down-regulated (D01-D04) under water deficit stress. For each protein spot, the left column represents the adequate water supply treatment, and the right column represents the water stress treatment. The upper three rows are 2Dviews and the lower three rows are 3D views of the protein spots. Each row represents a view from one replicate.

Supplementary fig 4. Two- and three-dimensional views of proteins up-regulated (U01-U15) under water deficit stress. For each protein spot, the left column represents the adequate water supply treatment, and the right column represents the water stress treatment. The upper three rows are 2Dviews and the lower three rows are 3D views of the protein spots. Each row represents a view from one replicate.

Supplementary fig 4. (continued)

U13

U14

U15

Supplementary fig 4. (continued)