Plant Omics Journal 2(5):181-189 (2009) ISSN: 1836-3644

Current status of research on *o*-acetylserine (thiol) lyase and β-cyanoalanine synthase, two enzymes of plant cysteine biosynthesis- a review

Annabelle U. Novero

Department of Biology, College of Science and Mathematics University of the Philippines Mindanao, Davao City 8022. The Philippines

E-mail: anovero@upmin.edu.ph

Abstract

The production of cysteine is the first major significant event in the plant sulfate assimilation process. Cysteine is a precursor of many important biological molecules. Two of the enzymes involved in cysteine biosynthesis are β -cyanoalanine synthase (CAS) and *o*-acetylserine (thiol) lyase, members of the Beta-subsituted alanine synthase (Bsas) gene family. There were about forty Bsas genes cloned and characterized from a wide range of plant families in a span of about two decades. Some information on the molecular and biochemical characteristics, as well as subcellular localization of the Bsas genes were recorded. Several reports concurred that the Bsas genes are regulated by external factors such as sulfur and nitrogen availability. More research work toward the elucidation of as many cysteine biosynthesis genes as possible is needed because the biochemical functions of majority of such genes deposited in the databases have not yet been proven. The results will have direct applications in sulfur-related genetic engineering of plants such as breeding for higher protein content.

Keywords: sulfate assimilation; cysteine synthase; gene expression

Abbreviations: APR-adenosine phosphosulfate reductase; Bsas-β-substituted alanine synthase; CAS-β-cyanoalanine synthase; OAS-TL-O-acetylserine (thiol) lyase; SAT-serine acetyltransferase

Introduction

Sulfur is an important macroelement that is vital to life. It is much less abundant in nature than carbon and nitrogen because it is not a major structural component of biomolecules. Instead, sulfur is a major catalytic and electro- chemical component essential for numerous biological functions (Leustek et al., 2000). Plants take up sulfur from the soil in the form of sulfate (SO₄²⁻; Saito, 2004). Biological functions in plants that are mediated by sulfur include electron transport in Fe/S clusters in photosynthesis and respiration, catalytic centers and protein-disulfide bridges (Hell, 1997). Long-distance translocation of sulfate plays a significant role in sulfur assimilation although little is known about the specificity of this transport (Hell, 1997). It is presumed that in the plant cell, the vacuole is the main storage center for sulfate (Cram. 1990).

Unlike plants, animals do not synthesize sulfur from sulfate and are dependent on plants for their sulfur nutrition. Animals take up sulfur in the form of methionine. Cysteine is the sulfur donor for methionine and other sulfur-containing secondary products (Saito, 2004). Hence, cysteine, methionine and other secondary products that contain sulfur such as thiamine and biotin are essential for human nutrition. In plants, sulfate is activated to adenosine 5'phosphosulfate (APS), reduced to sulfite (SO_3^{2-}) , and then to sulfide (S^2) . Cysteine is formed when sulfide is coupled with O-acetylserine (OAS), which is formed from serine and O-acetyl coenzyme A. There are two biochemical pathways involved in the formation of cysteine from sulfur in plants. The first occurs when sulfate (SO_4^{2-}) is reduced to sulfide (S^{2-}) . The second is the production of cysteine. Cysteine is

Fig 1. The two-step process of cysteine synthesis in plants.

synthesized in a two-step process (Figure 1; Hell et al., 2002). The two major enzymes involved in the production of cysteine from sulfate are serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). O-acetylserine is produced by SAT during catalysis of the reaction between serine and acetyl coenzyme A. In the presence of OAS-TL, cysteine is generated by the reaction between OAS and free sulfide. Serine acetyltrans- ferase and OAS-TL together form a complex known as the SAT/OAS-TL bi-enzyme complex (also called "cysteine synthase complex") that regulates cysteine synthesis (Leustek et al., 2000). Both enzymes are present in the chloroplast, cytosol and mitochondrion (Hofgen et al., 2001). Cysteine formation is the final step in the pathway of sulfur assimilation in plants and its importance is comparable to the synthesis of glutamine in the nitrogen assimilation pathway. Cysteine and other metabolites that are derived from the sulfur pathway, that carry free sulfhydryl groups are called thiols (Hofgen et al., 2001).

Droux (2003) suggested that the cysteine synthase complex is the center of the cellular-metabolite sensing model. The complex is found in both plants and bacteria, suggesting an efficient metabolic channeling that prevents loss of intermediate OAS (Bogdanova and Hell, 1997). The complex itself is not responsible for efficient synthesis of cysteine since OAS-TL is mainly active in the free form and almost inactive when bound to SAT. However, the cooperativity between SAT and OAS-TL alters the kinetic behavior of SAT towards the substrate (OAS) when it is associated with the complex (Droux *et al.*, 1998). This interaction is significant for cysteine formation because the concentration of acetyl CoA in plastids is limiting (Roughan, 1997). The amount of SAT bound to the complex determines the rate of OAS formation, directly affecting cysteine formation (Berkowitz *et al.*, 2002).

Although OAS-TL occupies a central position in the final step of the sulfur assimilation pathway, it was earlier assumed not to have a major role in the regulation of cysteine synthesis (Hofgen *et al.*, 2001). This is because over-expression of OAS-TL was not found to affect the cysteine content in transgenic tobacco plants (Saito *et al.*, 1994). However, Wirtz *et al.* (2004 studied the kinetic properties of both free and bound OAS-TL and found that fluctuations of OAS in the cell controls the binding and dissociation of OAS to OAS-TL. Therefore, OAS-TL was shown to control the rate of cysteine synthesis, establishing its integral role in the cysteine regulatory circuit (Wirtz *et al.*, 2004).

The formation of β-cyanoalanine from cysteine

 β -cyanoalanine is a non-protein amino acid that is formed when the enzyme β -cyanoalanine synthase (CAS) catalyzes the reaction between cysteine and cyanide (Blumenthal *et al.*, 1968). Cyanide is a byproduct of ethylene biosynthesis formed during cellular respiration. The CAS enzyme plays a major role in cyanide detoxification. For this reason, cyanide does not accumulate in non-cyanogenic plants even if the rate of ethylene biosynthesis is high (Miller and Conn, 1980; Poulton, 1990).

Two classes of CAS have been proposed to exist in plants on the basis of amino acid composition and protein structure: 1) a monomeric enzyme that was first detected in blue lupin (Akopyan et al., 1975), and; 2) a homodimeric enzyme that was first detected in spinach and Lathyrus latifolius (Ikegami et al., The second class is similar in 1988a, 1988b). structure to OAS-TL (Droux et al., 1992). CAS was first fully characterized by Blumenthal-Goldschmidt et al. (1963) following the hypothesis by Ressler (1962) that CAS and hydrolase are involved in the synthesis and degradation of β -cyanoalanine in plants. Hendrickson and Conn (1969) subsequently showed that CAS was distinct from all cysteine biosynthetic enzymes. In several species, both β -cyanoalanine and γ -glutamyl- β -cyanoalanine, a compound synthesized from β -cyanoalanine by γ -glutamyl transferase, were shown to be readily metabolized into asparagines by the enzyme asparaginase (Blumenthal et al., 1968). However, Ressler et al. (1969) found that the β cyanoalanine route to asparagines in several accessions of V. sativa was inactive, leading to a buildup of the neurotoxin compound in plant tissues (Figure 2). The CAS enzyme has been purified from

Fig 2. Pathways of β -cyanoalanine production and blockage of the asparaginase step in several accessions of *V. sativa.* (Adapted from Ressler *et al.*, 1969).

plants such as spinach, Lathyrus and Vicia (Akopyan et al., 1975; Ikegami et al., 1988a, 1988b, 1989) and is thought to exist exclusively in the mitochondria, due to its major role in the detoxification of hydrogen cyanide (HCN) during cellular respiration (Meyers and Ahmad, 1991). O-acetylserine (thiol) lyase and CAS are structurally and chemically similar, suggesting that the genes encoding them may have a common ancestor (Ikegami et al., 1989). Many studies have documented the high degree of structural and functional similarity between the two enzymes (Ikegami et al., 1989; Maruyama et al., 1998; Warrilow and Hawkesford 1998; Hatzfeld et al., 2000). Comparison of the gene structures of four OAS-TL genes from Arabidopsis revealed close relatedness, which was presumed to be due to a common ancestor that gave rise to subsequent gene duplications (Jost et al., 2000). O-acetylserine (thiol) lyase A, B and C from Arabidopsis were found to have a bi-functional OAS-TL/CAS activity in vitro but function only as OAS-TL under natural physiological conditions (Jost et al., 2000).

β-cyanoalanine synthase was shown to catalyze the synthesis of cysteine and cyanoalanine reactions (Warrilow and Hawkesford, 2002). Some cysteine synthases have been found to catalyze the formation of β-cyanoalanine from OAS and HCN as an additional activity (Ikegami *et al.*, 1989, Ikegami and Murakoshi 1994). High activities of both enzymes were detected in cyanogenic and non-cyanogenic plants including *Vicia angustifolia* (Ikegami *et al.*, 1989). Studies have shown that in *Arabidopsis*, this dual activity is attributed to an evolutionary event that might have created a CAS gene via intrachromosomal

duplication owing to its close position to OAS C on chromosome 3 (Hatzfeld *et al.*, 2000).

The β -substituted alanine synthase gene family

β-substituted alanines are non-protein amino acids that are synthesized in plants as secondary metabolites (Ikegami and Murakoshi, 1994). The βsubstituted alanine synthase (Bsas) gene family includes OAS-TL and CAS. They belong to a large family of genes that encode the pyridoxal phosphatedependent enzymes (Yamaguchi et al., 2000). Pyridoxal phosphate (PLP) is a cofactor for OAS-TL activity and binds with its lysine residue to form a Schiff base (Havashi 1995). The PLP enzymes are classified into α , β and γ subfamilies, in reference to how the protein products are folded (Yamaguchi et al., 2000). Pyridoxal phosphate-dependent enzymes are vitamin B₆ derivatives that are versatile organic cofactors used by many enzymes in biological reactions. Over 600 amino acid sequences that encode for approximately 60 B₆ enzymes from various plant species are present in published databases (Mehta and Christen, 1998). The B₆ enzymes link carbon and nitrogen metabolism and almost all are known to participate in amino acid biochemical pathways (Mehta and Christen, 1998).

Hatzfeld et al. (2000) proposed the classification of OAS and CAS genes into six subfamilies within the Bsas gene family. Table 1 shows a summary of the OAS-TL and CAS genes currently available in the databases. Based on kinetic analysis, proteins encoded by the Bsas family are classified into two groups, true OAS-TL and OAS-TL-like proteins (Warrilow and Hawkesford, 2000; Hatzfeld et al., 2000; Jost et al., 2000). True OAS-TL proteins exhibit both OAS-TL function and CAS activity but not cyanide detoxification (Jost et al 2000). Further, true OAS-TL proteins exhibit a side reaction by releasing sulfide from cysteine in the presence of thiols (Burandt et al., 2002). OAS-TL-like proteins catalyzed the formation of β -cyanoalanine in spinach and Arabidopsis (Hatzfeld et al., 2000; Maruyama et al., 2000).

Subcellular localization of OAS-TL genes

The gene encoding the OAS-TL enzyme was the first cloned gene in the plant sulfur assimilation pathway (Romer *et al.*, 1992; Saito *et al.*, 1992). The protein isoforms from the cytosol and plastids of spinach have subsequently been well-characterized (Droux *et al.*, 1992; Rolland *et al.*, 1993; Warrilow and Hawkesford, 1998). There are at least three isoforms of OAS-TL in higher plants. Lunn *et al.* (1990) suggested that the presence of multiple isoforms in

Gene Family	Product	Gene Designation	Accession Number	Plant Species	Location	References
Bsas 1	OAS-TL	So CS-A	D10476	Spinach, Spinacea oleracea	Cytosol	Saito et al 1992
		Ta Cys1	D13153	Wheat, Triticum aestivum	Cytosol	Youssefian et al 1993
		Cl	D28777	Watermelon, Citrulus vulgaris var.	Cytosol	Noji <i>et al</i> 1994
				lanatus		
		Zm Mcysp	X85803	Maize, Zea mays	Cytosol	Brander et al 1995
		At cys-3A	X84097	Thale cress, Arabidopsis	Cytosol	Barroso et al 1995
		At Cys1	X81697	Arabidopsis	Cytosol	Hesse and Altmann 1995
		Atg14880 (Bsas 1;1)	BT025878	Arabidopsis	Undetermined	Hell et al 1994; Barroso et al 1995; Jost et al 2000
		At3g22460 (Bsas 1;2)	NM_113145	Arabidopsis	Cytosol	Jost et al 2000
		Bj OAS-TL6	Y10847	Indian mustard, Brassica juncea	Cytosol	Schafer et al 1998
		Car	AJ006024	Chickpea, Cicer arietinum	Cytosol	Dopico et al 1998
		St CS-A	AF044172	Potato	Cytosol	Hesse and Hofgen 1998
		Os rcs1	AF073695	Rice, Oryza sativa	Cytosol	Nakamura et al 1999
		Os rcs3	AF073697	Rice	Cytosol	Nakamura et al 1999
		PCS-1	AB029511	Potato	Cytosol	Maruyama and Ishizawa 2001
Bsas 2	OAS-TL	Can	CAA46086	Pepper, Capsicum annum	Plastid	Romer et al 1992
		At cpACS1	X81698	Arabidopsis	Plastid	Hesse and Altmann 1995
		At mtACS1	X81973	Arabidopsis	Plastid	Hesse and Altmann 1995
		At3g22460 (Bsas 2;1)	AY065375	Arabidopsis	Plastid	Barroso et al 1995; Hesse et al 1999; Jost et al 2000
		At3g59760 (Bsas 2;2)	AY128885	Arabidopsis	Mitochondrion	Hesse et al 1999; Jost et al 2000
		PCS-2	AB029512	Potato, Solanum tuberosum	Plastid	Maruyama et al 2001
Bsas3	CAS	So cys-C	D37963	Spinach	Mitochondrion	Saito et al 1994
		At OAS5	AJ010505	Arabidopsis	Mitochondrion	Hatzfeld et al 2000
		Atg61440 (Bsas3;1)	Y128782	Arabidopsis	Mitochondrion	Hatzfeld et al 2000; Yamaguchi et al 2000
		PCAS-1	AB027000	Potato	Mitochondrion	Maruyama et al 2001
		PCAS-2	AB029338	Potato	Mitochondrion	Maruyama et al 2001
Bsas4	OAS-TL	Bj OAS-TL5	Y10846	Indian mustard	Cytosol	Schafer et al 1998
		At OAS3 (cysD1)	AJ011603	Arabidopsis	Cytosol	Hatzfeld and Saito 1999
		At OAS6 (cysD2)	AB024283	Arabidopsis	Cytosol	Yamaguchi et al 2000
		At5g28020 (Bsas 4;1)	AK317505	Arabidopsis	Cytosol	Hatzfeld et al 2000; Yamaguchi et al 2000
		At3g04940 (Bsas 4;2)	BT008721	Arabidopsis	Cytosol	Hatzfeld et al 2000; Yamaguchi et al 2000
		At5g28030 (Bsas 4;3)	BT2002155	Arabidopsis	Plastid	Nakamura et al 1997
Bsas5		At CS26	NM_111234.3	Arabidopsis	Cytosol	Nakamura et al 1997
		At3g03630 (Bsas 5;1)	BT002155	Arabidopsis	Plastid	Nakamura et al 1997
		Voas-tl5	DQ456491	Vetch, Vicia sativa	Cytosol	Novero et al 2008
Bsas6		Os rcs4	AF073698	Rice	Cytosol	Nakamura et al 1999
Unclassified		Soybean OAS-TL	AF452451	Soybean, Glycine max	Cytosol	Chronis and Khrishnan 2003
		Poplar OAS-TL	AY781280	Poplar, Populus alba x Populus tremula	Undetermined	Herschbach et al 2005
		Vicia sativa OAS-TL	EF193211	Vetch	Undetermined	Pajuelo et al 2007

Table 1. Designation and subcellular localization of β -substituted alanine synthase genes.

different compartments may be due to the inability of the compartments to transport the enzymes. In *Arabidopsis*, there are nine OAS-TL-like genes (Table 1). The presence of isoforms in multiple compartments was presumed necessary in the coordination of cysteine and β -cyanoalanine metabolism (Nakamura *et al.*, 1999). In general, the compartmentalization of isoforms and their varying substrate specificities has made the progress towards elucidating the exact functions of plant OAS-TL enzymes slow (Wirtz *et al.*, 2004). To date, the exact number of OAS-TL isoforms and their functions has not been determined fully for any plant species.

Since the formation of cysteine is the first occurrence of sulfur in a reduced, organic form in the cell, all compartments involved in protein biosynthesis appear to contain the OAS-TL and SAT genes. The cytosol, plastids and mitochondria of spinach and cauliflower had been found to contain these two enzymes (Lunn *et al.*, 1990; Rolland *et al.*, 1992). In spinach, CAS activity was found to be predominant in the mitochondria but was also detected in the chloroplast and cytosol (Warrilow and Hawkesford 1998).

Regulation of OAS-TL activity

In the two-step process of sulfur assimilation and cysteine formation in plants, the following enzymes are involved: sulfate transporter, ATP sulfurylase, APS kinase, 3'(2)'-phosphatase, APS reductase, sulfite reductase, OAS-TL and SAT (Saito *et al.*, 2000). O-acetylserine (thiol) lyase serves as the terminal enzyme. Sulfur availability is one of the factors that regulate the activities of these genes including OAS-TL (Nakamura *et al.*, 1999).

The response of OAS-TL genes to varying levels of sulfur has been studied in several plant species. In Arabidopsis, OAS-TL was found to respond differently to sulfur starvation at the cell and whole plant levels. At the cell level, Takahashi and Saito (1996) found no significant effect of sulfur starvation on OAS-TL mRNA activity. In whole seedlings, an increase in OAS-TL activity was noted (Hesse et al., 1997). Warrilow and Hawkesford (1998) found small increases in OAS-TL activity from root tissues but no increase in activity in leaf tissues. At the level of gene expression, regulation of OAS-TL was deemed minimal. In soybean cotyledons, Kim et al. (1999) found sulfur deficiency led to the accumulation of OAS. In the plant metabolic pathway, cysteine is the first molecule that contains both nitrogen and sulfur (Saito, 2004).

Reuveny et al. (1980) found earlier that sulfur and nitrogen metabolism are linked and the absence or reduction of one leads to the deprivation of the other. Plants, therefore, have to adjust their metabolism to compensate for changes in nitrogen and sulfur contents. Such changes can trigger molecular mechanisms that can alter other biosynthetic pathways like glutamine biosynthesis (Hesse et al., 2004). For example, barley plants starved of sulfur were found to have a depressed ability to take up nitrates and ammonium accompanied by increased capacity for sulfur intake (Clarkson et al., 1989). Sulfur assimilation is dependent on the supply of OAS which is a precursor of cysteine. The availability of OAS in turn is dependent on nitrogen and carbon availability (Kopriva et al., 2002). Reactions catalyzed by the OAS-TL/SAT bi-enzyme complex represent the major link between carbon/nitrogen and sulfate assimilation (see Section 2.3). O-acetylserine (thiol) lyase and SAT are both found to have several isoforms found in the chloroplast, cytosol and mitochondrion, suggesting that the ability to form cysteine in all these three compartments is important for compartments that need to produce proteins (Hoefgen et al., 2001). Since there is insufficient evidence to explain these intricate mechanisms, there is a need to isolate and characterize all OAS-TL genes of a given plant.

Nakamura et al. (1999) determined that the functions of four OAS-TL isoforms in Oryza sativa were distinct from one another and were regulated in a coordinated way by the availability of sulfur, nitrogen and light. Sulfur starvation induced the accumulation of the *rcs1* gene in roots and shoots; rcs2 accumulated in shoots grown only in light; rcs3 was abundant in roots and was reduced in dark conditions and under sulfur deprivation and *rcs4* was scarce in all organs. Transcriptome analyses of genes involved in sulfur metabolism (two sulfate transporters and one APR (adenosine phosphosulfate reductase) gene in Arabidopsis, indicated that the presence of nitrate could induce the genes to have an increased capacity for uptake (Hesse et al., 2004). Data from the same study also suggested that the absence of nitrate in the roots could down-regulate the capture and assimilation of sulfur by the roots. In soybean, the accumulation of seed storage proteins was regulated by nitrogen and sulfur availability (Kim et al., 1999); cysteine synthesis was found to be dependent on the availability of sulfur and OAS (Chronis and Krishnan, 2003). Transcription levels of Vicia sativa OAS-TL increased as a response to sulfur stress (Novero and Ford, 2009), establishing the functionality of said gene.

Arabidopsis as a model for understanding plant cysteine biosynthesis

Out of around 40 Bsas genes cloned from various plant species, nine isoforms were reported from Arabidopsis (Arabidopsis Genome Inititative 2000; Watanabe et al 2008). Some were well-characterized in terms of enzymatic characteristics and cellular localization: cytosol (Bsas 1;1), plastid (Bsas 2;1) and mitochondrion (Bsas 2;2). Despite the published details on the biochemical nature of the Bsas isoforms of Arabidopsis, much remains to be discovered about the molecular mechanisms of the genes in vivo as well as their influence on the response of the whole plant to sulfur deprivation. Since OAS-TL is a key metabolite for cysteine synthesis, it is important to determine the response of plant OAS-TL to sulfur nutritional stimuli because it will give a better understanding of this gene's molecular mechanism.

Conclusion

The creation of crops that are better equipped to provide improved nutrition for humans and animals is a major goal of plant genetic engineering. One of the ways to achieve this is by increasing the content of essential amino acids such as cysteine, the first major organic product of the plant sulfate assimilation pathway. Unlike the nitrogen assimilation pathway, there are still many gaps to be filled in the understanding of the enzymes and pathways of sulfate assimilation. In the past two decades, considerable progress has been made in the understanding of these genes but reports on biochemical characterization are few and far between. Thus, further research on the roles of the Bsas genes (OAS-TL and CAS) in as many crops as possible, are valuable.

References

- Akopyan T, Braunstein A, Goryachenkova E (1975) Betacyanoalanine synthase: purification and characterization. PNAS 72: 1617-1621.
- Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. Nature 408: 796–815.
- Barroso C, Vega JM, Gotor C (1995) A new member of the cytosolic o-acetylserine (thiol) lyase gene family in *Arabidopsis thaliana*. FEBS Lett 363: 1-5.
- Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277: 30629-30634.

- Blumenthal SG, Hendrickson HR, Abrol YP, Conn EE (1968) Cyanide metabolism in higher plants. III. The biosynthesis of β -cyanoalanine. J Biol Chem 213: 5303-5307.
- Blumenthal-Goldschmidt S, Butler GW, Conn EE (1963) Incorporation of hydrocyanic acid labeled with carbon-14 into asparagine in seedlings. Nature 197: 718-719.
- Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from *Arabidopsis thaliana*. Plant J 11: 251-268.
- Brander KA, Owttrim GW, Brunold C (1995) Isolation of a cDNA (EMBL X85803) encoding a putative chloroplastic isoform of cysteine synthase from maize. Plant Physiol 108: 1748.
- Brander KA, Owttrim GW, Brunold C (1995) Isolation of a cDNA (EMBL X85803) encoding a putative chloroplastic isoform of cysteine synthase from maize. Plant Physiol 108: 1748.
- Burandt P, Schmidt A, Papenbrock J (2002) Three Oacetyl-L-serine (thiol) lyase isoenzymes from *Arabidopsis* catalyze synthesis and cysteine desulfuration at different pH values. J Plant Physiol 159: 111-119.
- Chronis D, Khrishnan HB (2003) Sulfur assimilation in soybean: molecular cloning and characterization of O-acetylserine (thiol) lyase (cysteine synthase). Crop Science 43: 1819-1827.
- Clarkson DT, Sarker LR, Purves JV (1989) Depression and nitrate and ammonium transport in barley plants with diminished sulfur status: evidence of co-regulation of nitrogen and sulfate intake. J Exp Bot 40: 953-963.
- Cram WJ (1990) Uptake and transport of sulfate. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds.) Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Fundamental, Environmental and Agricultural Aspects. The Hague: SBP Academic Publisher. Pp 3-11.
- Dopico B, Esteban R, Labrador E (1998) cDNA expressed in chickpea epicotyls. Unpublished.
- Droux M (2003) Plant serine acetyltransferase: new insights for regulation of sulphur metabolism in plant cells. Plant Physiol Biochem 41: 619-627.
- Droux M, Martins J, Sajus P, Douce R (1992) Purification and characterization of o-acetylserine (thiol) lyase from spinach chloroplasts. Arch Biochem Biophys 295: 379-390.
- Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetyl-serine (thiol) lyase in higher plantsstructural and kinetic properties of the free and bound enzymes. European J Biochem 255: 235-245.

- Hatzfeld Y, Saito K (1999) Identification of two putative nitrate transporters highly homologous to CHL 1 from *Arabidopsis thaliana*. Plant Physiol 119: 805-806.
- Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β -cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123: 1163-1171.
- Hayashi H (1995) Pyridoxal enzymes: mechanistic diversity and uniformity. J Biochem 118: 463-473.
- Hell R, Bork C, Bogdanova N, Frolov I, Hauschild R (1994) Isolation and characterization of two cDNAs encoding for compartment specific isoforms of Oacetylserine (thiol) lyase from *Arabidopsis thaliana*.. FEBS Lett 351: 257-262.
- Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant *Arabidopsis thaliana*. Amino Acids 22: 245-257.
- Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138-148.
- Hendrickson HR, Conn EE (1969) Cyanide metabolism in higher plants. IV. Purification and properties of the β -cyanoalanine synthase of blue lupine. J Biol Chem 244: 2632-2640.
- Herschbach C, Mult S, Kreuzweiser J, Kopriva S (2005) The influence of anoxia on whole plant sulphur nutrition on flooding-tolerant poplar (*Populus tremula x Populus alba*). Plant Cell Environ 28: 167-175
- Hesse H, Altmann T (1995) Molecular cloning of a cysteine synthase cDNA from *Arabidopsis thaliana* Plant Physiol 108: 851-852.
- Hesse H, Hoefgen R (1998) Isolation of cDNAs encoding cytosolic (Accession No. AF044172) and plastidic (Accession No. AF044173) cysteine synthase isoforms from *Solanum tuberosum* (PGR98-057). Plant Physiol 116: 1604.
- Hesse H, Lipke J, Altmann T, Hofgen R (1999) Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (o-acetylserine (thiol) lyase) from *Arabidopsis thaliana*. Amino Acids 16,113-131.
- Hesse H, Lipke J, Altmann T, Hofgen R (1997) Expression analysis and subcellular localization of cysteine synthase isoforms from *Arabidopsis thaliana*. In: Cram WJ, De Kok LJ, Stulen I, Brunold C, Rennenberg H. (eds) Sulphur Metabolism in Higher Plants: Molecular Ecophysiological and Nutritional aspects. Leiden: Blackhuys Publ. Pp. 227-230.
- Hesse H, Nikiforova V, Gaklere B, Hofgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulphur metabolism. J Exp Bot 55: 1283-1292.

- Hofgen R, Kreft O, Willmitzer L, Hesse H (2001) Manipulation of thiol contents in plants. Amino Acids 20: 291-299.
- Ikegami F, Murakoshi I (1994) Enzymatic synthesis of non-protein B-substituted alanines and some higher homologues in plants. Phytochem 35: 1089-1104.
- Ikegami F, Takayama K, Murakoshi I (1988a) Purification and properties of β -cyano-L-alanine synthase from *Lathyrus latifolius*. Phytochem 27: 3385-3390.
- Ikegami F, Takayama K, Murakoshi I (1988b) Purification and properties of B-cyano-L-alanine synthase from *Spinacea oleracea*. Phytochem 27: 2011-2016.
- Ikegami F, Takayama K, Kurihara T, Horiuchi S, Tajima C, Shirai R, Murakoshi I (1989) Purification and properties of β -cyano-L-alanine synthase from *Vicia angustifolia*. Phytochem 28: 2285-2292.
- Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the Oas gene family encoding o-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in *Arabidopsis thaliana*. Gene 223: 237-247.
- Kim H, Hirai MY, Hayashi H, Chino M, Naito S, Fujiwara T (1999) Role of o-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed-storage gene by sulfur and nitrogen nutrition. Planta 209: 282-289.
- Kopriva SV (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479-475.
- Kopriva S, Suter M, von Ballmos P, Hesse H, Krahenbuhl U, Rennenberg H, Brunold C (2002) Interaction of sulfate assimilation with carbon and nitrogen metabolism in *Lemna minor*. Plant Physiol 130: 1406-1413.
- Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular studies. Plant Mol Biol 51:141-166.
- Lunn JE, Droux M, Marttin J, Douce R (1990) Localization of ATP-sulfurylase and O-acetylserine (thiol) lyase in spinach leaves. Plant Physiol 94:1345-1352.
- Maruyama A, Saito K, Ishizawa K (2001) Betacyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 6: 749-760.
- Maruyama A, Ishizawa K, Takagi T, Esashi Y (1998) Cytosolic beta-cyanoalanine synthase activity attributed to cysteine synthases in cocklebur seeds. Purification and characterization of cytosolic cysteine synthases. Plant Cell Physiol 7: 671-680.

- Maruyama A, Ishizawa K, Takagi T (2000) Purification and characterization of betacyanoalanine synthase and cysteine synthases from potato tubers: are beta-cyanoalanine synthase and mitochondrial cysteine synthases the same enzyme? Plant Cell Physiol 41: 200-208.
- Mehta P, Christen P (1998) The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. In: Purich D (ed.) Advances in Enzymology and Related Areas of Molecular Biology, Volume 74: Mechanism of Enzyme Action, Part B. John Wiley and Sons, Inc. Pp129-184.
- Meyers D, Ahmad S (1991) Link between L-3cyanoalanine synthase activity and differential cyanide sensitivity of insects. Biochim Biophys Acta 1075: 195-197.
- Miller JM, Conn EE (1980) Metabolism of hydrogen cyanide by higher plants. Plant Physiol 65: 1199-1202.
- Nakamura T, Koizumi N, Sano H (1997) Isolation of a novel cysteine synthase cDNA (AB003041) from *Arabidopsis thaliana*. Plant Physiol 114: 747.
- Nakamura T, Yamaguchi Y, Sano H (1999) Four genes encoding cysteine synthase: isolation and differential responses to sulfur, nitrogen and light. Gene 229:155-161.
- Noji M, Murakoshi I, Saito K (1994) Molecular cloning of a cysteine synthase cDNA from *Citrullus vulgaris* (watermelon) by genetic complementation in an *Escherischia coli* Cysauxotroph. Mol Gen Genet 244: 57-66.
- Noji M, Murakoshi I, Saito K (1994) Molecular cloning of a cysteine synthase cDNA from *Citrullus vulgaris* (watermelon) by genetic complementation in an *Escherischia coli* Cysauxotroph. Mol Gen Genet 244: 57-66.
- Novero AU, Taylor PWJ, Ford R (2008) Isolation and characterization of o-acetylserine (thiol) lyase, an enzyme of the cysteine biosynthetic pathway of vetch (Vicia sativa L.). Aust J Crop Sci 2: 96-104.
- Novero AU, Ford R (2009) The influence of sulfur limitation on expression levels of an o-acetylserine (thiol) lyase gene cloned from vetch (*Vicia sativa* L.). Biol Plant (In Press)
- Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomares AJ (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of o-acetylserine (thiol) lyase under metal stress. Plant Biol 9: 672-681.
- Poulton, JE (1990) Cyanogenesis in plants. Plant Physiol 94: 401-405.
- Ressler C (1962) Isolation and identification from common vetch of the neurotoxin β -cyano-Lalanine, a possible factor in neurolathyrism. J Biol Chem 237: 733-735.

- Ressler C, Nigam SN, Giza YH (1969) Toxic principle in vetch: isolation and identification of v-glutamyl-B-cyanoalanine from common vetch seeds. Distribution in some legumes. J Am Chem Soc 91: 2758-2765.
- Reuveny Z, Dougall D, Trinity P (1980) Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. PNAS 77: 6670-6672.
- Rolland N, Droux M, Douce R (1992) Subcellular distribution of o-acetylserine(thiol)lyase in cauliflower (*Brassica oleracea*) inflorescence. Plant Physiol 98: 927-935.
- Rolland N, Droux M, Lebrun M, Douce R (1993) Oacetylserine (thiol) lyase from spinach (*Spinacea oleracea*) leaf: cDNA cloning, characterization and overexpression in *Escherichia coli* of the chloroplast isoform. Arch Biochem Biophys 300: 213-222.
- Romer S, d'Harlingue A, Camara B, Schantz R, Kuntz M (1992) Cysteine synthase from *Capsicum anuum* chromoplasts. Characterization of cDNA cloning of an up-regulated enzyme during fruit development. J Biol Chem 267: 17966-17970.
- Roughan PG (1997) Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channeling within the chloroplast fatty acid synthase. Biochem J 327: 267-273.
- Saito K, Miura N, Yamazaki M, Hirano H, Murakoshi I (1992) Molecular cloning and bacterial expression of cDNA encoding a plant cysteine synthase. PNAS 89: 8078-8082.
- Saito K, Tasugichi K, Takagi Y, Murakoshi I (1994) Isolation and characterization of cDNA that encodes a putative mitochondrion-localizing isoform of cysteine synthase (O-acetylserine (thiol) lyase) from *Spinacea oleracea*. J Biol Chem 269: 28187-28192.
- Saito K, Takahashi H, Noji M, Inoue K, Hatzfeld Y (2000) Molecular regulation of sulfur assimilation and cysteine synthesis. In: Brunold C (ed) Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Switzerland: Paul Haupt. Pp 59-72.
- Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136: 2443-2450.
- Schafer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator *Brassica juncea* L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamyl cysteine synthetase isoform. Plant Mol Biol 37: 87-97.

- Takahashi H, Saito K (1996) Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiol 112: 273-280.
- Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008) Physiological roles of the B-substituted alanine synthase gene family in Arabidopsis. Plnt Physiol 146: 310-320.
- Warrilow AGS, Hawkesford MJ (1998) Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. J Exp Bot 327: 1625-1636.
- Warrilow AG, Hawkesford MJ (2000) Cysteine synthase (o-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 347: 985-993.

- Warrilow AGS, Hawkesford MJ (2002) Modulation of cyanoalanine synthase and O-acetylserine (thiol) lyase A and B activity by B-substituted alanyl and anion inhibitors. J Exp Bot 53: 439-445.
- Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant cysteine biosynthesis revisited in *Arabidopsis thaliana*. J Exp Bot 55: 1785-1798.
- Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and B-cyanoalanine synthase. Plant Cell Physiol 41: 465-476.
- Youssefian S, Nakamura M, Sano H (1993) Tobacco plants transformed with the o-acetylserine (thiol) lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas. Plant J 4: 759-769.