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Abstract 
 

The differences between stylar protein of the Japanese pear (Pyrus pyrifolia (Burm.f.)) cultivars ‘Kosui’ (S4S5) and ‘Kikusui’ (S2S4) 

were compared by two-dimensional difference gel electrophoresis (2-D DIGE), and were labelled and visualized with different 

fluorescent dyes (IC3-OSu, IC5-OSu) on a single 2-D gel. The individual different expressed proteins spots were subjected to 

identification. The proteins were analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry 

(MALDI-TOF/MS) to identify proteins related to gametophytic self-incompatibility (GSI). S4-RNase and thaumatin-like protein 1 

were successfully detected as expected in the pistils of ‘Kosui’ and ‘Kikusui’. S5-RNase was also detected in the pistils of ‘Kosui’. 

However, we could not detect S2-RNase in ‘Kikusui’ in this study, possibly because the level of expression of S2-RNase might be 

minuscule, or the estimated isoelectric point (pI) of S2-RNase (pI:9.26) was more basic than S4-RNase (pI: 9.17) and S5-RNase (pI: 

9.01). These results indicate that proteomic studies are effective tools for detection of the expected proteins and might be helpful for 

finding the unknown key proteins related to the mechanism of self-incompatibility (SI) in many other SI plants. 
 

 

Keywords: protein analysis; Two-dimensional difference gel electrophoresis; MALDI-TOF/MS; gametophytic self-incompatibility; 

Rosaceae; 2D-DIGE; Peptide Mass Fingerprint; fluorescent dye. 

Abbreviations: BP- band pass; BPB- bromophenol blue; CHAPS-3-[(3-Cholamidopropyl) dimethylammonio]propanesulfonic acid; 

DIGE-difference gel electrophoresis; DTT-dithiothreitol; GSI-gametophytic self-incompatible; IEF-isoelectric focusing; 

MALDI-TOF/MS- matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; MS-mass spectrometry; MS/MS- 

tandem mass spectrometry; pI-isoelectric point; PMF-peptide mass fingerprint; SAGE-serial analysis of gene expression; SDS- 

sodium dodecyl sulfate; SFB-S-haplotype-specific F-box gene; SI- self-incompatibility; 2-D- two- dimensional. 

 

Introduction 
 

SI is a mechanism which prevents self-fertilization and 

promotes out-crossing (De Nettancourt, 1977). Among the 

species showing SI, those belonging to Solanaceae, Rosaceae 

and Plantaginaceae exhibit GSI, which is controlled by 

glycoprotein with RNase (S-RNase) activity expressed in the 

pistil. S-RNase is encoded by the S-locus gene (McClure et al. 

1989; Sassa et al., 1996), and another S-locus gene named SFB 

(S-haplotype-specific F-box gene) in the Rosaceae (Ushijima et 

al., 2003) determines pollen-specific protein, F-box protein. 

SFB is tightly linked to the S-RNase gene (Yamane et al., 2003 

a).  Until  now, SI  in  Rosaceae  has mainly been studied 

in Japanese pear (Pyrus pyrifolia (Burm.f.)) and almond 

(Prunus dulcis (Mill.) D.A.). Many molecular biological 

techniques such as isoelectric focusing (IEF) (Yamashita et al.,  

1987; Hiratsuka et al. 1986, 1995), two-dimensional (2-D) 

polyacrylamide gel electrophoresis (Tao et al., 1997, 1999), 

staining for RNase activity (Sassa et al., 1992; Boskovic et al.,  

 

 

 

1999), immunoassay (Sassa et al., 1993, 1998; Ushijima et al.,  

2001), PCR (Guerra et al., 2009; Rahemi et al., 2010) and 

RT-PCR (Yamane et al., 2003a, b; Ma and Oliveira, 2000; 

Okada et al., 2008; Sanzol, 2009) have been used for the 

investigation of SI in Rosaceae. However, studies of the 

translational level of the S-RNase gene in the Rosaceae are 

scarce. Recently, mass spectrometry (MS)-based proteomics 

have been popular due to the availability of gene and genome 

sequence databases and technical development in many 

categories (Takasaki et al., 2008; Amato et al., 2010;  

Gammulla et al., 2011), such as the methods of protein 

ionization and mass analysis (Aebersold and Mann, 2003). 

Proteins can be identified directly in sodium dodecyl sulfate 

(SDS) gels by excising the stained band and performing in-gel 

digestion, typically with trypsin (Shevchenko et al., 1996), 

followed by analysis with MALDI-TOF/MS or electrospray 

ionization-tandem mass spectrometry. 
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Peptide identification is mainly performed by entering the mass 

list into the peptide mass fingerprint (PMF) database and 

tandem mass spectrometry (MS/MS) ions search database. In 

this study, we compared the protein differences between the 

Japanese pear cultivars ‘Kosui’ and ‘Kikusui’ by 2-D-DIGE 

and MALDI-TOF/MS to identify proteins related to SI. 

Additionally, we discuss the efficacy of the proteome 

techniques with regard to the results. 

 

Materials and Methods 
 

Plant materials 
 

Two varieties of Japanese pear with known S-genotypes, 

‘Kosui’ (S4S5) and ‘Kikusui’ (S2S4), were used. The styles 

were dissected from flower buds at the ‘balloon’ stage of 

development and then rapidly frozen in liquid N2 and stored at 

-80°C until use. 

 

Protein extraction and labeling 

 

The proteins were extracted from the pistils as described by 

Damerval et al. (1986) with slight modifications. Precipitated 

proteins were resuspended in an extraction buffer containing 

7.0 M urea, 2.0 M thio-urea, 2.0% 

3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid 

(CHAPS) and 2.0% n-dodecyl-β-D-maltoside (Valcu and 

Schlink, 2006). The concentration of total protein was 

determined using Bio-Rad Protein Assay Dye Reagent 

Concentrate (Bio-Rad Laboratories, Hercules, CA, USA) 

according to the procedure described. The extracted proteins 

were labeled using IC3-OSu (‘Kosui’) and IC5-OSu (‘Kikusui’) 

(Dojindo Laboratories, Kumamoto, Japan), respectively. In 

brief, 50 μg of protein was incubated with 1.0 μl 400 pM of 

either IC3-OSu or IC5-OSu for 1 h at room temperature in the 

dark, and then freshly dissolved in 

dimethyl sulfoxide. The reaction was stopped by the addition of 

2.0 μl 10 mM lysine that was treated for 15 min at room 

temperature in the dark. Equal volumes of each of the labeled 

samples were mixed, which were then cleaned up to remove 

contaminant (e.g. salt, surfactant, phenol and lipid). 

Trichloroacetic acid (TCA) was added to the samples so that 

final concentration of TCA was 10%, and incubated 1 h at 

room temperature. Sodium deoxycholate was added up to a 

final concentration of 0.02%, incubated for 15 min at room 

temperature and centrifuged. One M ammonium bicarbonate 

was added to the obtained pellets, which were then vortexed. 

After adjusting the samples to the neutral pH, 1 ml pre-cooled 

acetone was added and incubated for 2 h at -30oC. For IEF, the 

cleaned up samples were centrifuged and then added with 100 

μl of a lysate buffer containing 7.0 M urea, 2.0 M thio-urea, 

2.0% CHAPS, 2.0% n-dodecyl-β-D-maltoside, 0.45 M 

DL-dithiothreitol (DTT) and 1.0% IEF buffer BIOLITE 3/10 

(Bio-Rad). 

 

2-D DIGE and image analysis 

 

Fifty micrograms of rehydrated proteins were loaded onto a 7 

cm nonlinear IPG Ready Strip pH 3–10 NL (Bio-Rad). The strip 

was rehydrated in the above-mentioned lysate buffer containing 

0.1% bromophenol blue (BPB) at room temperature. The first 

dimension IEF was performed automatically at 250 V for 30 

min, 4,000 V for 1 h, and 10,000 Vh at 4,000V, at 20oC on a 

Protean IEF CELL system (Bio-Rad). Next, the focused strips 

were treated in equilibration buffer (7.0 M urea, 2.0 M thio-urea, 

2.0% CHAPS, 2.0% n-dodecyl-β-D-maltoside) containing 2%  

 

 

(w/v) DTT and 2.5% iodoacetamide. The second dimension 

separation was performed on 10% sodium dodecyl sulfate (SDS) 

polyacrylamide gel. The gels were run at a constant current of 

25 mA/gel for 70 min until the BPB dye front had run off the 

bottom of the gel. Labeled proteins were visualized using a 

FLA3000 imager (Fuji Film, Tokyo, Japan). The IC3-OSu 

images were scanned using a 532 nm laser and a 580 nm band 

pass (BP) 30 emission filter, whereas the IC5-OSu images were 

scanned using a 633 nm laser and a 670 nm BP30 emission filter. 

All gels were scanned at 100 mm resolution. The scanned 

images were then analyzed using a PD Quest (Bio-Rad). The 

labeled proteins were visualized as different images, i.e. 

IC3-OSu image (red), IC5-OSu image (green) and overlaying 

IC3-OSu and IC5-OSu images (yellow). Proteins were 

post-stained with 0.1% coomassie brilliant blue-R250 and the 

spots of interest were excised manually and subjected to mass 

spectrophotometric protein identification. 

 

Protein identification 

 

Protein spots which varied in expression in the area of estimated 

appearance of S-RNase from the database (MW:25kDa, pI:9) 

were identified. They were excised from the gel, and then 

in-gel digestion with trypsin was performed using a modified 

method of Shevchenko et al. (1996). After trypsin digestion, the 

peptides were spotted onto a MALDI target plate 

(AnchorChip™ Target Plates with Transponder Technology, 

Bruker Daltonik GmbH, Bremen, Germany ) using 1.0 μl of a 

3% solution of matrix saturated in acetone with recrystallized 

α-cyano-4-hydroxycinnamic acid and analyzed by a 

MALDI-TOF mass spectrometer (AutoFLEX III TOF/TOF, 

BRUKER DALTONIK GmbH). These mass spectrometers were 

operated in a positive reflector mode, and the spectra were 

internally calibrated using trypsin autoproteolysis products. 

Protein identification was finally performed by entering the 

mass list into a MASCOT PMF database (Mascot search, 

http://www.matrixscience.com). 

 

Results and Discussion 

 

Typical 2-D DIGE gel images of pistils from ‘Kosui’ and 

‘Kikusui’ are shown in Fig. 1. Protein spots which varied in 

expression in the area of the estimated appearance of S-RNase 

from the database were analyzed, and three proteins related to 

SI were identified (Fig.2 and Table 1). S4-RNase and 

thaumatin-like protein 1 were detected in the pistils of both 

‘Kosui’ and ‘Kikusui’. S5-RNase was also detected in the pistils 

of ‘Kosui’. S-RNase is essential for SI. In the pistils, S-RNase 

inhibits protein synthesis of internal incompatible pollen tubes 

by degradation of rRNA stored within pollen grains (McClure 

et al., 1990), and finally arrest pollen tube growth (Matton et al., 

1994). In addition, recent study assumes that SFB protein 

ubiquitinates non-self S-RNases to lead to degradation and 

specifically interacts with self S-RNase to escape ubiquitination, 

leading to arrest of the growth of self-pollen tubes (Ushijima et 

al., 2003).   Thaumatin-like protein 1 is an acidic glycosylated 

protein which has signal peptides for secretion to extracellular 

spaces. The members of thaumatin proteins have a cognitive 

function in signal molecules (Grenier et al., 1999). It is 

suggested that thaumatin-like protein 1 plays a role in the 

recognition of signals from pollen (Grenier et al., 1999; Sassa 

and Hirano, 1998). In the present study, S2-RNase, which 

should be expressed in ‘Kikusui,’ could not be detected. It was 

reported that the amounts of S-RNase were different among 

each S-haplotype (S3>S1>S5>S4>S6>S2>S7), and that the 

amounts of S-RNase produced das from the same S-haplotype 

http://www.matrixscience.com/
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Table 1. Identified stylar proteins in Japanese pear cultivar, ‘Kosui’ and ‘Kikusui’.  

Cultivar name Spot No. Accession No. 

Swiss-Prot 

Protein name MW z (Da) pI y Score of Mascot Search Peak No. Identified peptides 

‘ Kosui ’  (S4S5) A 

 

 

 

 

 

 

B 

RNS5_PYRPY 

 

 

 

 

 

 

RNS4_PYRPY 

 

S5-RNase 

(Pyrus pyrifolia) 

 

 

 

 

 

S4-RNase 

(P. pyrifolia) 

26,059 

 

 

 

 

 

 

25,858 

9.01 

 

 

 

 

 

 

9.17 

114 

 

 

 

 

 

 

141 

A1 

A2 

A3 

A4 

A5 

A6 

 

B1 

B2 

B3 

B4 

B5 

R.ALLDIENAIR.N 

K.LLEPQLAIIWPNVFDR.T 

K.HGTCGYPTIDNENHYFETVIK.M 

K.LFTVHGLWPSSMAGPDPSNCPIR.N 

K.SGEHFIDCPHPFEPISPHYCPTNNIK.Y 

K.SGEHFIDCPHPFEPISPHYCPTNNIK.Y 

 

R.YFCPANVK.Y 

R.SLVDIENAIR.S 

K.FINCPHGPPK.G 

K.LFTVHGLWPSNR.N 

R.TTTELVEVTLCSNR.D 

‘ Kikusui ’  

(S2S4) 

C 

 

 

 

D 

TLP1_PYRPY 

 

 

 

RNS4_PYRPY 

 

Thaumatin-like 

protein1 

(P. pyrifolia) 

 

S4-RNase 

(P. pyrifolia) 

25,308 

 

 

 

25,858 

5.07 

 

 

 

9.17 

76 

 

 

 

132 

C1 

C2 

C3 

 

D1 

D2 

D3 

D4 

D5 

D6 

K.NQCPQAYSYAYDDK.S 

K.SSTFTCFGGPNYEITFCP.- 

K.SACLALNQPQYCCTGAYGTPDTCPPTDFSK.V 

 

R.YFCPANVK.Y 

R.SLVDIENAIR.S 

R.SDHVGFWER.E 

K.FINCPHGPPK.G 

K.LFTVHGLWPSNR.N 

R.TTTELVEVTLCSNR.D 
z:MW was cited from a MASCOT PMF database (Mascot search, http://www.matrixscience.com).  y:pI was cited from a UniProt datebase(http://www.uniprot.org/).  

 

 
 

Fig 1. 2D-DIGE gel images of protein extracted from the the pistils in Japanese pear cultivar, ‘Kosui’ and ‘Kikusui’. The extracted proteins were labeled using IC3-OSu (‘Kosui’) and IC5-OSu 

(‘Kikusui’), respectively. Circled protein spots were detected in the area of estimated appearance of S-RNase from the datebase (MW:25kDa, pI:9) were identified.   

http://www.matrixscience.com/
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Fig 2. The MALDI-TOF/MS spectrum of tryptic digest of the spots from CBB-stained 2D-gel of style protein in Japanese pear 

cultivar, ‘Kosui’ and ‘Kikusui’. After trypsin digestion, the peptides were analyzed by a MALDI-TOF mass spectrometer 

(AutoFLEX III TOF/TOF, BRUKER DALTONIK GmbH). These mass spectrometers were operated in a positive reflector mode, 

and the spectra were internally calibrated using trypsin autoproteolysis products. Protein identification was finally performed 

entering the mass list into a MASCOT Peptide Mass Fingerprint (PMF) database (Mascot search, http://www.matrixscience.com).  

 

 

 

differed among cultivars (Zhang and Hiratsuka, 1999). 

Moreover, the concentration of S2-RNase was about half that of 

S4-RNase in ‘Kikusui’ (Zhang and Hiratsuka, 2000). Because 

the expression level of S2-RNase might be minuscule, we could 

not detect it in ‘Kikusui’ in the present study. Furthermore, in 

this study, the proteins were loaded onto a gel strip with a range 

of pH from 3 to 10 at IEF, and spots of S-RNases (pI S4: 9.17, 

S5: 9.01) were thus detected at the end of the SDS 

polyacrylamide gel at the second dimension separation. The 

estimated pI of S2-RNase was more basic than S4-RNase and 

S5-RNase (pI:9.26), which might be a possible reason that the 

S2-RNase spot was not separated. In a future study, we will use 

two-dimensional electrophoresis to investigate the amount of 

protein and pH range of the gel in IEF. Gene expression and 

function can be studied through several techniques such as 

cDNA microarrays and serial analysis of gene expression 

(SAGE). However, the success of these approaches depends on 

the progress of genomic research and transcriptome techniques 

such as cDNA microarrays are still restricted to model plants. 

Moreover, even generally performed transcription analysis in 

non-model plants requires some information about the 

orthologous genes. However, a proteomic study can analyze 

translation products directly, so that it is possible to perform 

transcription analysis for non-model plants, which hold poor 

genomic information. Proteome techniques have become a 

powerful tool for researching various mechanisms such as 

pigment biosynthetic processes (Muccilli et al., 2009), 

pathogen interactions (Garavaglia et al., 2010), high chilling 

tolerance (Zhang et al., 2010), induction of drought resistance 

(Macarisin et al., 2009), and regulation of fruit senescence (Qin  

 

et al., 2009) in many important crops. Moreover, Feng et al. 

(2009) compared the protein profiles of self-compatible and 

self-incompatible cultivars of apricot (P. armeniaca L.) using 

LC-ESI-MS/MS technique, and identified S-RNase only in SI 

pistils. Further proteomic studies might be helpful for 

confirming the unknown key proteins related to unclear 

mechanisms in many SI plants. In conclusion, we identified 

proteins related to SI, such as S4-RNase, S5-RNase and 

thaumatin-like protein 1 in the SI cultivars of Japanese pear, 

‘Kosui’ and ‘Kikusui’, by proteome analysis. However, key 

enzymes of SI remain unclear in other plant species with SI. 

Therefore, it may be possible to use proteome analysis to 

elucidate unclear mechanisms of SI system in other SI plants. 
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