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Abstract   

 

Rutin is the main flavonoid compound in common buckwheat (Fagopyrum esculentum Moench) and sucrose is a major enhancer of 

both phenolic production and organ development in plants. In this work, we measured the effect of sucrose on on the growth of 

buckwheat seedlings. The accumulation of rutin in these seedlings and the expression pattern of the structural genes that are involved 

in the flavonoid biosynthetic pathway were also investigated. The growth of buckwheat was inhibited when the concentration of 

sucrose was increased to 50 g/L; however, the expression of most flavonoid biosynthetic genes were increased after 1 or 2 days of 

treatment and rutin content showed a marked increase when the concentration of sucrose was increased from 10 g/L to 50 g/L.  
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Abbreviations: HPLC, high-performance liquid chromatography; PAL, phenylalanine ammonium lyase; C4H, cinnamic acid 4-

hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; 4CL, 4-coumarate-CoA ligase; DFR, dihydroflavonol reductase; 

F3H, flavanone-3-hydroxylase; F3′H, flavonoid-3′-hydroxylase; FLS, flavonol synthase; ANS, anthocyanin synthase. 

 

 

Introduction 

 

Buckwheat, which belongs to the Polygonaceae family, has 

received great interest mostly because of its antioxidant 

components, namely, polyphenols, including rutin, catechins, 

orientin, vitexin, quercetin, isovitexin, and isoorientin 

(Kalinova et al., 2006; Oomah and Mazza, 1996; Watanabe, 

1998). Buckwheat contains more rutin than most other grain 

crops, fruits, and vegetables. Rutin has been shown to have 

many functions, including antioxidative, anti-inflammatory, 

and anti-hypertensive activities (Afanas'ev et al., 1989; 

Afanas'eva et al., 2001; Holasova et al., 2002; Matsubara et 

al., 1985) and has also been shown to act as a protectant 

against ultraviolet (UV) radiation or diseases in plants 

(Gaberscik et al., 2002). Flavonoids comprise a large family 

of low-molecular-weight polyphenolic secondary metabolites 

that are widespread throughout the plant kingdom, ranging 

from mosses to angiosperms (Koes et al., 1994). Flavonoids 

are involved in UV-scavenging, attracting pollinators and 

seed dispersal, forming pigments in flowers, fruit fertility, 

and disease resistance (Koes, et al., 1994). Recent evidence 

suggests that certain flavonoids reduce dental caries and 

cariogenic bacteria incidence and use as a promising natural 

agent for noninvasive root caries therapy (Wood, 2007; Wu, 

2009). Almost all of the enzymes involved in the biosynthetic 

pathways of different flavonoid classes have been completely 

elucidated (Forkmann and Martens, 2001; Schijlen et al., 

2004). With respect to buckwheat, we have obtained the 

basic genes information of the flavonoid biosynthetic 

pathway in common buckwheat ((Li et al., 2010). In the past 

decade, attempts to modify flavonoid biosynthesis have been 

made using different biotic or abiotic methods. The 

expression of flavonoid biosynthesis regulatory genes 

appears to be highly dependent on tissue type and/or response 

to internal or external signals such as hormones, light, 

microbial elicitors, UV radiation, sugars, phosphate 

limitation, or cold stress, which affect the signal transduction 

and gene expression involved in biosynthesis (Dixon and 

Paiva, 1995; Ferri et al., 2009; Laura et al., 2007; Leyva et 

al., 1995; Mol et al., 1996; Tsukaya et al., 1991). As an 

essential factor for plant growth and metabolism, sugars are 

not only energy sources and structural components, but also 

are physiologic signals regulating the expression of a variety 

of genes involved both in primary and secondary metabolism 

(Koch, 1996). It has been reported that sucrose and other 

sugars are involved in responses to many biotic and abiotic 

stresses, cross-talking with hormones (Gazzarrini and 

McCourt, 2003; Gibson, 2004), and modulating the 

expression of many genes implicated in photosynthesis, 

respiration, nitrogen metabolism, and defense processes (Jang 

et al., 1997). Ohto et al. (2001) reported that anthocyanin 

production in Arabidopsis was enhanced when plants were 

grown on a sucrose-containing medium (Ohto et al., 2001). 

Solfanelli et al. (2006) also reported that the induction of 

anthocyanin synthesis is sucrose-specific, as determined by 

testing the effects of a set of metabolic sugars and 

nonmetabolic sugars in Arabidopsis seedlings (Solfanelli et 

al., 2006). Specific polyphenol families such as anthocyanins,  
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Fig 1. The growth of seedlings in different concentration of sucrose and time-course treatment. (A, B) Effects of different 

concentrations of sucrose on the length and fresh weight of buckwheat seedlings. The seedlings were treated for 10 days. (C, D) The 

time-course of 50 g/L sucrose treatment on the length and fresh weight of buckwheat seedlings. Data are presented as the mean ± SD 

of triplicate experiments. 

 

catechins, and stilbenes in Vitis vinifera berries and cell 

cultures were also enhanced by increasing sucrose 

concentration (Ferri et al., 2011). Boss et al. reported that the 

expression of 7 genes involved in anthocyanin biosynthesis 

was enhanced during the development of berry skins in V. 

vinifera under the influence of sugars (Boss et al., 1996). In 

this study, Buckwheat (Fagopyrum esculentum Moench) 

seedlings were treated with different sucrose concentrations 

to investigate the influence and/or induction effect of sucrose 

on the synthesis of rutin in the culture of buckwheat. We also 

examined the transcription patterns and levels of a key set of 

enzymes involved in the flavonoid pathway.  

 

Results and discussion 

 

Effects of sucrose on the growth of buckwheat seedlings 

 

After cultivation with different concentrations of sucrose, the 

length and fresh weight of buckwheat seedlings were 

compared. The length and fresh weight of seedlings were 

slightly increased by low-concentration treatment (less than 

30 g/L sucrose), but they were obviously decreased when 

more concentration (from 50 to 70 g/L) of sucrose were used 

(Fig. 1 A and B). The length and fresh weight of seedlings 

treated with 50 g/L sucrose were lower compared to those of 

control seedlings throughout the time-course of sucrose 

treatment (Fig. 1 C and D). Previously, it has been reported 

that high sugar levels inhibited the development seedlings, 

repressed photosynthetic gene expression, and induced 

storage metabolism genes (Rook et al., 2006). High 

concentrations of exogenous sugars also have been shown to 

delay germination and arrest early growth, preventing 

seedlings from expanding cotyledons and developing true 

leaves and an extensive root system (Rognoni et al., 2007). In 

this study, we showed that high concentrations of sucrose 

(more than 30 g/L) inhibited the growth of buckwheat 

seedlings in a dose-dependent manner. 

 

Effects of sucrose on the expression of flavonoid 

biosynthetic genes in buckwheat seedlings 

 

In order to elucidate the effects of  sucrose on the flavonoid 

biosynthetic pathway, we examined the expression levels of 

flavonoid biosynthetic genes in seedlings of F. esculentum. 

The expression levels of FePAL, FeC4H, Fe4CL1, Fe4CL2, 

FeCHS, FeCHI, FeF3H, FeF3′H, FeFLS1, FeFLS2, FeDFR, 

and FeANS are shown in Fig. 2. Even though all of these 

genes were expressed throughout the course of treatment, the 

expression of most genes (FeC4H, FeCHS, FeCHI, FeF3H, 

FeF3′H, FeFLS1, FeFLS2, FeDFR, and FeANS) was greatest 

after 1 or 2 days of treatment. FePAL was an exception, as 

the expression of this gene was only slightly increased after 1 

day of 50 g/L sucrose treatment and then markedly repressed 

after 2 days; FePAL expression remained repressed during 

almost all the sucrose time-course treatment compared to 

control treatment. Even more interesting is the finding that 

the expression of FeCHS, FeF3H, FeFLS1, FeFLS2, and 

FeANS, which are downstream genes of the flavonoid 

biosynthetic pathway, was greater with sucrose treatment 

than control treatment during most of the treatment course. 

Further, sucrose was only associated with up-regulation of 

the FeDFR gene after 1 day treatment, with gene expression 

not markedly changed during the course of treatment 

compared to control seedlings. This finding is not consist 

with a previous report that expression of the DFR gene was 

induced by sucrose in the grape; the reason for this 

discrepancy may be that expression of the DFR gene is also 

regulated by other factors such as  
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Fig 2. Expression levels of flavonoid biosynthesis genes in F. esculentum seedlings treated with 50 g/L sucrose. The expression level 

of each gene is relative to that of the constitutively expressed histone H3 gene. Each value is the mean of 3 replicate experiments ± 

SD. 

 

light and developmental mechanisms of the plant (Gollop et 

al., 2002).       

 

Effects of sucrose on rutin content of buckwheat seedlings 

 

Rutin content of buckwheat seedlings was determined using 

HPLC (Fig. 3). The results showed that the production of 

rutin was increased slightly by more concentrations of 

sucrose (up to 50 g/L), however, it was decreased markedly 

by 70 g/L sucrose treatment (Fig. 3 A), this result indicated 

that too high concentration of sucrose was not contribute to 

rutin biosynthesis in buckwheat seedlings. During the time-

course of 50 g/L sucrose treatment, compared to the control, 

rutin content was markedly increased with seedling age 

especially in the sucrose-treated seedlings after 8 days 

treatment (Fig. 3 B). According to our results, suitable 

sucrose concentration and harvest time are two important 

factors to affect the nutritional quality of buckwheat sprouts.  

Solfanelli et al. (2006) revealed that the flavonoid and 

anthocyanin biosynthetic pathways are strongly up-regulated 

following sucrose treatment and that sucrose also affects both 

flavonoid and anthocyanin content in Arabidopsis. In this 

study, we found that a series of genes, namely, FeC4H, 

FeCHS, FeF3H, FeFLS1, FeFLS2, and FeANS was up-

regulated during sucrose treatment. It has been reported that 

the transcription factor genes MYB75/PAP1and 

PAP2/MYB90 play an essential role in the sucrose-induced 

anthocyanin biosynthesis pathway (Lloyd and Zakhleniuk, 

2004; Teng et al., 2005); it is possible that such regulatory 

genes have a close relationship and contribute to the increase 

in rutin synthesis we observed in this study. Further work is 

needed to elucidate the possible relationship between sucrose 

signal and transcription factors 

 

Materials and methods 

 

Plant materials and culture conditions  

 

Seeds of F. esculentum Moench were surface-sterilized with 

70% ethanol for 30 s and 4% (v:v) bleach solution for 15  
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Fig 3. The production of rutin in buckwheat seedlings treated with sucrose. (A) Effects of different concentrations of sucrose on rutin 

production in buckwheat seedlings (10 days treatment) (B) Time course of 50 g/L sucrose treatment on the rutin production in 

buckwheat seedlings. Data are represented as the mean ± SD of triplicate experiments. 

 

 

min, then rinsed several times in sterile water. The seeds 

were placed on sucrose-free half-strength sterilized 

Murashige-Skoog (1/2 MS) medium solidified with 0.8% 

agar. The seeds were germinated at 25°C in a growth 

chamber with approximately 60% humidity in the light/dark 

(16/8 h). After 2 days, the germinated seedlings were 

transferred to solid 1/2 MS medium containing 0, 10, 30, 50, 

or 70 g/L sucrose. Samples were harvested after 1, 2, 4, 6, 8, 

10, and 12 days by cutting off the roots with scissors, rapidly 

measuring the length and fresh weight, freezing in liquid 

nitrogen, and storing at -80°C until analysis. 

 

Total RNA extraction and quantification of gene expression 

 

Total RNA was isolated from different F. esculentum 

seedlings using the RNeasy Plant Mini Kit (Qiagen; 

Valencia, CA, USA). For qRT-PCR, 1 μg of total RNA was 

reverse-transcribed using the Superscript II First Strand 

SynthesisKit (Invitrogen; Carlsbad, CA, USA) and an oligo 

(dT)20 primer. Transcription levels were analyzed by real-

time PCR. The gene-specific primer sets were designed for 

real-time PCR, as previously described (Li, et al., 2010). 

Gene expression was normalized to that of the histone H3 

gene as a housekeeping gene (Timotijevic et al., 2010). Real-

time PCR reactions were performed in triplicate on a 

MiniOpticon system (Bio-Rad Laboratories; Hercules, CA) 

with the Quantitect SYBR Green PCR Kit (Qiagen). The 

PCR protocol was as follows: denaturation for 5 min at 95°C, 

followed by 40 cycles of denaturation for 15 s at 95°C, 

annealing for 15 s at 56°C, and elongation for 20 s at 72°C. 

PCR results were calculated as the mean of 3 replicated 

treatments. Statistical differences between treatments were 

evaluated by standard deviation. 

 

Quantitative analysis of rutin using high-performance 

liquid chromatography (HPLC)  

 

Rutin concentration in buckwheat samples was determined 

using a Futecs model NS-4000 HPLC apparatus (Daejeon, 

Korea) with a UV-Vis detector and auto sampler. Rutin was 

obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO, 

USA). Acetic acid was purchased from Jun sei Chenical Co., 

Ltd. (Kyoto, Japan). For HPLC analysis, the above extraction 

was filtered through 0.45-μm poly filter and then diluted 2-

fold with methanol prior to HPLC analysis. The analysis was 

monitored at 280 nm and performed using a C18 column 

(250 mm x 4.6 mm, 5 μm; RStech, Daejeon, Korea); the 

mobile phase was a gradient prepared from mixtures of 

0.15% acetic acid and methanol, and the column was 

maintained at 30°C.The flow rate was set at 1.0 mL/min. The 

injection volume was 20 μL. The results were calculated 

using a standard curve.  
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