POJ 5(6):518-531 (2012)

Supplementary Data

Comprehensive computational analysis of different classes of Glutathione S-transferases in *Triticum aestivum* L.

B. Pandey, P. Sharma, D.M Pandey, J. Varshney, S. Sheoran, M. Singh, R. Singh, I. Sharma and R. Chatrath

Table S1. Results obtained from MEME tool represent 15 bp length motif detected in TaGSTU and TaGSTF sequences

TaGSTU	TaGSTF
CGAGTCCCTCATCAT	GTGAAGGCCTGGTGG
CGAGTCCCTCATCAT	GTGAAGGCCTGGTGG
CGAGTCCCTCATCAT	GTGAAGGCATGGTGG
CGAGTCCCTCATCAT	GTCAAGGCCTGGTGG
CGAGTCACTCATCAT	GTCAAGGCCTGGTGG
CGAGTCCATGATCAT	GTGAAGGCGTGGTGG
CGAGTCGCTCGTCAT	GTCAAGGCATGGTGG
CGAGTGCCTCATCAA	GTGAACGCGTGGTGG
CGAGTCGCTGCTCAT	-
CGAGTCCCAGGTCAT	-

 Table S2. Position weight matrix for (a) TaGSTU and (b) TaGSTF motif. PWM has four rows one for each of A, C, G and T and the number of columns was equal to the length of the motif.

 (a)
 (b)

А	С	G	Т
0	1	0	0
0	0	1	0
1	0	0	0
0	0	1	0
0	0	0	1
0	0.9	0.1	0
0.1	0.7	0.2	0
0.1	0.9	0	0
0.1	0	0	0.9
0	0.7	0.3	0
0.7	0.1	0.2	0
0	0	0	1
0	1	0	0
1	0	0	0
0.1	0	0	0.9

A	C	G	Т
0	0	1	0
0	0	0	1
0	0.375	0.625	0
1	0	0	0
1	0	0	0
0	0.125	0.875	0
0	0	1	0
0	1	0	0
0.25	0.5	0.25	0
0	0	0	1
0	0	1	0
0	0	1	0
0	0	0	1
0	0	1	0
0	0	1	0

ISSN:1836-3644

Table S3. Log-odds scoring matrix was constructed to score the motifs for (a) TaGSTU and (b) TaGSTF motif.

1	`
19	a)
(i)

Predicted motif	Score of each motif
CGAGTCCCTCATCAT	27.8482681077305
CGAGTCACTCATCAT	25.0409131856729
CGAGTCCATGATCAT	23.4559506849518
CGAGTCGCTCGTCAT	24.2335582636153
CGAGTGCCTCATCAA	21.5084181048459
CGAGTCGCTGCTCAT	22.0111658422789
CGAGTCCCAGGTCAT	21.6485957628942

(b)

Predicted motif	Score of each motif
GTGAAGGCCTGGTGG	28.129283016945
GTGAAGGCCTGGTGG	28.129283016945
GTGAAGGCATGGTGG	27.129283016945
GTCAAGGCCTGGTGG	27.3923174227788
GTCAAGGCCTGGTGG	27.3923174227788
GTGAAGGCGTGGTGG	27.129283016945
GTCAAGGCATGGTGG	26.3923174227788
GTGAACGCGTGGTGG	24.3219280948874

(g) % Identity of I	Non-Coding Reg	ions <u>aa</u>	(b) % Identity of Codi	ing Regions 🛛 🏨	
TaGSTU1A	TaGSTU1B	68.89	TaGSTU1A	TaGSTU1B	89.34
TaGSTU1A	TaGSTU1C	71.70	TaGSTU1A	TaGSTU1C	86.48
TaGSTULA	TaGSTU2	30.77	TaGSTU1A	TaGSTU2	47.90
TaGSTU1A	TaGSTU3	43.18	T. COTT11.4	T. COTT:::	52.20
TaGSTU1B	TaGSTU1C	67.92	IaGSIUIA	TaGSTU3	52.20
TaGSTU1B	TaGSTU2	28.79	TaGSTU1B	TaGSTU1C	87.82
TaGSTU1B	TaGSTU3	38.10	TaGSTU1B	TaGSTU2	47.93
TaGSTU1C	TaGSTU2	28.79	T-COTULD	T-COTU2	54.90
TaGSTU1C	TaGSTU3	38.10	TaGSTUID	TaGSTUS	34.89
TaGSTU2	TaGSTU3	23.08	TaGSTU1C	TaGSTU2	55.73
TaGSTF6b	TaGSTF4	19.12	TaGSTU1C	TaGSTU3	55.33
TaGSTF6b	TaGSTF2	28.77	TaGSTU2	TaGSTU3	50.79
TaGSTF6b	TaGSTF1	36.62	TaGSTF6b	TaGSTF4	56.09
TaGSTF6b	TaGSTF5	23.94	TaCSTEGN	TaGSTF2	60.97
TaGSTF6b	TaGSTF3	33.80	TaCSTE6b	TaGSTEL	61 50
TaGSTF4	TaGSTF2	20.75	TaGSTE6b	TaGSTES	59.00
TaGSTF4	TaGSTF1	16.90	T-COTEC	T-COTES	61.00
TaGSTF4	TaGSTF5	29.55	TaGS1F00	TAGSIFS	50.50
TaGSTF4	TaGSTF3	16.95	TaGS1F4	TaGSIF2	58.50
TaGSTF2	TaGSTF1	33.80	TaGS1F4	TaGSIFI	51.17
TaGSTF2	TaGSTF5	39.62	TaGS1F4	TaGSIFS	46.64
TaGSTF2	TaGSTF3	44.62	TaGSTF4	TaGSTF3	55.73
TaGSTF1	TaGSTF5	30.14	TaGSTF2	TaGSTF1	58.05
T _a G _S TF1	TaGSTF3	42.25	TaGSTF2	TaGSTF5	57.60
TaCSTES	TaCSTE3	42.62	TaGSTF2	TaGSTF3	77.00
1405115	1405115	42.02	TaGSTF1	TaGSTF5	54.47
			TaGSTF1	TaGSTF3	59.77
			TaGSTF5	TaGSTF3	55.49

 Table S4. The multiple sequence alignment of (a) Non-coding region and (b) coding region of TaGSTU and TaGSTF.

Table S5. The ClustalW multiple sequence alignment of wheat TaGSTU protein sequences

Table	55. The Clustar w multi	pie sequence angline	in of wheat radiate pro	nem sequences	
TaGSTU1A	A 222	TaGSTU1B	222	97%	
TaGSTU1A	A 222	TaGSTU1C	222	99%	
TaGSTU1A	A 222	TaGSTU2	233	47%	
TaGSTU1A	A 222	TaGSTU3	243	41%	
TaGSTU11	3 222	TaGSTU1C	222	98%	
TaGSTU11	3 233	TaGSTU2	233	47%	
TaGSTU1H	3 233	TaGSTU3	243	42%	
TaGSTU10	C 222	TaGSTU2	233	47%	
TaGSTU10	C 222	TaGSTU3	243	42%	
TaGSTU2	233	TaGSTU3	243	51%	

Table S6. The ClustalW multiple sequence alignment of wheat TaGSTF protein sequences.

Table S6. The Cl	ustal W multiple sequ	ence alignment of w	wheat TaGSTF p	rotein sequences.	
TaGSTF1	212	TaGSTF2	224	54%	
TaGSTF1	212	TaGSTF3	222	58%	
TaGSTF1	212	TaGSTF5	213	48%	
TaGSTF1	212	TaGSTF6b	218	59%	
TaGSTF1	212	TaGSTF4	222	52%	
TaGSTF2	224	TaGSTF3	222	79%	
TaGSTF2	224	TaGSTF5	213	45%	
TaGSTF2	222	TaGSTF6b	218	52%	
TaGSTF2	222	TaGSTF4	222	60%	
TaGSTF3	222	TaGSTF5	213	45%	
TaGSTF3	222	TaGSTF6b	218	57%	
TaGSTF3	222	TaGSTF4	222	64%	
TaGSTF5	213	TaGSTF6b	218	43%	
TaGSTF5	213	TaGSTF4	222	38%	
TaGSTF6b	218	TaGSTF4	222	57%	