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Defense proteins are induced in wheat spikes exposed to Fusarium graminearum 
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Abstract 

 

Fusarium head blight (FHB), caused by Fusarium graminearum, infects wheat and barley and diminishes both grain yield and 
quality. Triticum spp. ecotypes differ in their susceptibility to this disease. Using a proteomics approach, we isolated and identified 
the proteins associated with FHB resistance in a popular Korean wheat genotype with moderate resistance. At 5 days post-anthesis, 
the floral spikes were point-inoculated with a macroconidial suspension of F. graminearum. After 48 h, we detected 31 of 100 acidic 
protein spots, and determined that these differentially expressed protein (DEP) spots were the result of FHB exposure. In all, 17 
DEPs were up-regulated, 5 were down-regulated, and 2 were unevenly changed. Following tryptic digestion, we used MALDI-
TOF/TOF mass spectrometry to identify 14 unique proteins in those 24 DEPs, including those related to carbon metabolism and 
photosynthesis. After inoculation, Rubisco small and large subunits, isoflavone reductase, a chloride carrier/channel, and (1,3;1,4) β-
glucanase were markedly up-regulated, whereas wall-associated kinase 4 was down-regulated. In addition, a (1,3;1,4) β-glucanase 
protein (PR-2) was up-regulated in FHB-infected spikes, a finding that is in agreement with previous proteomics and transcriptomics 
analyses of other crops. Interestingly, most of these proteins were unevenly regulated over the course of infection, although their 
levels of protein expression were not lower than those untreated samples.  
 

Keywords: Fusarium graminearum, Fusarium head blight, MALDI-TOF/TOF-MS, Rubisco, Scanning electron microscopy, Wheat. 
Abbreviations: FHB_Fusarium head blight, MALDI_matrix assisted laser desorption/ionization, MS_mass spectrometry, 
SEM_scanning electron microscopy, TOF_time-of-flight. 

 
Introduction  

 
Plants counter pathogen invasions by activating a variety of 
defense mechanisms. Most species display resistance to such 
attacks through a combination of a general defense strategy 
and induced biochemical processes (Mahalingam et al., 
2003). These responses may incorporate the reprogramming 
of cellular metabolism, accumulation of blockade substances, 
and the production of antimicrobial compounds that act 
directly to prevent invasion. Understanding the molecular 
mechanisms, these inducible defenses against fungal 
pathogens could be useful in designing protective strategies 
that would involve the expression of genes, encoding defense 
proteins in crop species. Fusarium head blight (FHB), or 
scab, causes by Fusarium graminearum. This devastating 
disease of wheat and other cereal grains is common in humid 
and semi-humid climates, causing a 30 to 50% loss in yield 

during epidemic years (McMullen et al., 1997). In particular, 
grains have poor quality and are contaminated with 
mycotoxins such as deoxynivalenol (DON), vomitoxin, and 
estrogenic zearalenone, all detrimental to humans and 
animals (Bai and Shaner, 2004). These mycotoxins have been 
implicated in pathogenesis, phytotoxicity, and the induction 
of apoptosis in eukaryotic cell cultures (Desjardins and Hohn, 
1997; Kang and Buchenauer, 1999; Shifrin and Anderson, 
1999). Host resistance is considered the most efficient means 
for controlling this disease (Martin and Johnston, 1982), and 
some germplasms have shown resistance activity against scab 
in wheat and other small grains that historically have 
hindered breeding efforts (Mesterházy, 1997). FHB 
resistance is classified into five types: initial infection, spread 
of  infection,  kernel  infection,  tolerance,  and toxicity (van  
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   Table 1. Quantitative distinctions in protein abundance from wheat spikes after 12, 24, or 48 h of treatment with F. graminearum. 
12 HAI 24 HAI 48 HAI 

Spot No. 
Up/Down Fold Up/Down Fold Up/Down Fold 

Up-regulated 
4 ↑ 19.12 ↑ 13.86 ↑ 9.36 
6 ↑ 14.04 ↑ 9.08 ↑ 1.26 
7 ↑ 4.72 ↑ 5.51 ↑ 4.34 
8 ↑ 1.30 ↑ 1.80 ↑ 1.66 
9 ↑ 5.65 ↑ 4.38 ↑ 4.64 

10 ↑ 6.20 ↑ 10.88 ↑ 9.06 
11 ↑ 2.00 ↑ 1.54 ↑ 1.53 
12 ↑ 6.09 ↑ 4.88 ↑ 5.47 
13 ↑ 1.49 ↑ 1.97 ↑ 2.34 
16 ↑ 4.99 ↑ 3.48 ↑ 1.61 
17 ↑ 4.60 ↑ 5.08 ↑ 4.61 
18 ↑ 1.12 ↑ 1.63 ↑ 1.62 
19 ↑ 7.10 ↑ 9.10 ↑ 1.93 
20 ↑ 3.93 ↑ 2.46 ↑ 1.81 
21 ↑ 3.44 ↑ 1.64 ↑ 1.14 
23 ↑ 51.22 ↑ 31.15 ↑ 30.60 
31 ↑ 1.32 ↑ 2.59 ↑ 4.06 

Down-regulated 
2 ↓ 4.66 ↓ 2.47 ↓ 4.30 
5 ↓ 18.94 ↓ 2.95 ↓ 7.24 

14 ↓ 6.46 ↓ 2.59 ↓ 4.04 
29 ↓ 13.84 ↓ 1.95 ↓ 3.40 
30 ↓ 1.57 ↓ 1.13 ↓ 3.06 

Unevenly affected 
3 ↓ 0.15 ↑ 3.39 ↑ 3.56 

22 ↑ 2.12 ↑ 1.32 ↓ 1.99 
 
 
 
Eeuwijk et al., 1995). Genetic mapping results have implied 
that two or three major genes, together with various minor 
genes, control the initiation and spread of infection (Lin et 
al., 2004). Previous research has identified several host genes 
induced by F. graminearum exposure, and has determined 
which protein-encoding genes are up- or down-regulated in 
their expression (Pritsch et al., 2000; Kruger et al., 2002; 
Wang et al., 2005; Geddes et al., 2008; Taylor et al., 2008; 
Walter et al., 2010). Proteins provide a connection between 
the genetic information stored in DNA and how it is 
manifested in plant phenotypes. Methodological advances in 
protein analysis have led to the large-scale characterization of 
proteins involved in certain biological functions, within 
specific organs or tissues, at different developmental stages, 
or under environment stresses. Proteomics techniques are 
valuable tools for studying plant responses and possible 
resistance mechanisms. For example, a 2-DE-based protein 
separation method can be used to generate and compare 
profiles of global protein expression. One major advantage of 
this technique is that differentially expressed proteins can 
clearly and reproducibly be detected when infected and 
uninfected plants are examined. Proteins showing differential 
expression between treatments may have important roles in 
plant-stress responses. Being able to identify such proteins by 
MALDI technology provides insight into the molecular 
mechanisms of resistance as well as the underlying functions 
of those proteins in determining resistance by wheat plants 
(Kim et al., 2003; Ndimba et al., 2003; Wang et al., 2005). 
In the proteomics study described here, our objective was to 
isolate proteins from a high-yielding Korean cultivar of 
wheat, ‘Keumgang’, that are induced soon after infection by 
F. graminearum. We employed MALDI-TOF/TOF mass 

spectrometry to characterize these differentially expressed 
proteins and help determine their involvement in pathogen 
resistance in wheat spikes. 

 

Results and discussion 

 

Fungal Invasion and Sporulation 
 
Glumes in wheat are the floral bracts positioned in pairs at 
the pedestal of each spikelet (Esau, 1965). They partially 
enfold the two to five florets of a spikelet. In our experiment, 
we sprayed the spikes with a spore suspension of F. 

graminearum at 5 d after anthesis. Inoculated glumes were 
sampled at 12, 24, and 48 HAI. An additional sample was 
collected for SEM analysis immediately after inoculation. All 
SEM tissues were examined within 72 HAI (Fig. 1). The 
macroconidia germinated from the time of inoculation up to 
48 HAI, on the abaxial side of the glumes. Hyphae showed 
immediate invasion and had frequent contact with the 
stomata, suggesting that these were the points of penetration. 
The first hyphae to emerge were uniformly thin and, initially, 
unbranched. After 12 HAI, we observed, via SEM, that the 
epidermal cells were directly penetrated by hyphae growing 
on the surface of the glumes, and the stomata were clearly 
visible. By 24 to 48 HAI, we saw that the hyphae were 
thickened and had very noticeable branching. These 
formations had a coralloid structure and were well-developed 
primarily along the stomatal rows. After 48 h, more thick 
hyphae were found in subcuticular locations. By that time 
point, conidiophores with developed macroconidia also were 
apparent on the glume surfaces, indicating that the fungus 
had quickly completed one asexual cycle on those tissues. 
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Fully developed hyphae with conidia were also observed at 
24 and 48 HAI (Fig. 1). These results were similar to those 
previously reported with ‘Sumai 3’ and ‘Wheatwon’ (Pritsch 
et al., 2000). In addition, hyphae with predetermined conidia 
were clearly visible on the epidermal and subcuticular 
surfaces of the tissues at 48 and 76 HAI. 
 

Proteomics Patterns in Wheat Spike Proteins Induced by F. 

graminearum 
 
Changes in the Fusarium-induced proteome were monitored 
following inoculation. Proteins were isolated from control 
spikes as well as those collected at 12, 24, and 48 HAI. 2-DE 
separation was coupled with CBB-staining. Using image 
analysis by PDQuest software, we found more than 100 
highly reproducible protein spots in each gel (Fig. 2). Of 
these, 31 (31%) could be classified as differentially expressed 
proteins (DEPs). They were broadly distributed, with pI 

values ranging from 3 to 10 and apparent molecular weights 
of between 10 and 250 kDa. By comparison, Wang et al. 
(2005) have used MALDI-TOF-MS with Fusarium-treated 
wheat spikes to describe 30 DEPs out of 1,104 protein spots, 
or 3.32%. Although our protein catalog was similar for both 
untreated and treated samples, many spots showed noticeable 
differences in protein abundance. Over the time course (12, 
24, and 48 HAI), we categorized the profiles for 24 DEPs 
into three groups: up- (17 DEPs), down- (5), and unevenly 
regulated (2). This effect was more pronounced at 24 and 48 
HAI. Under stress, 15 spots were altered by at least 2.34-fold 
compared with the control (Figs. 2, 3; Table 1). 
 

FHB-responsive Protein Identified by MALDI-TOF/TOF 

MS 
 
2-DE technology has been successfully applied for studying 
changes in protein patterns from spikes of wheat when 
induced by F. graminearum (Campo et al., 2004; Wang et al., 
2005). However, while preparing our protein extracts, we 
encountered some problems associated with phenolic and 
nucleic acids, starch, and other contaminants. Nevertheless, 
the TCA protein precipitation method (Damerval et al., 1986; 
Porubleva et al., 2001; Kim et al., 2010) enabled us to 
overcome those challenges. Proteins from all 31 DEPs were 
subjected to tryptic digestion and analyzed by MALDI-
TOF/TOF MS. Of the 24 DEPs identified here, most were 
plastid proteins. These were determined through MS 
fingerprint data and by querying the Swiss-Prot and NCBInr 
protein databases. Although some proteins could be matched 
with Triticum spp., most were matched with those from 
Arabidopsis, rice, barley, rye, and other cereals. This was 
because genome sequences are under-represented for wheat. 
Photosynthetic enzymes dominated the 2-DE profile of leaf 
tissue, which is in agreement with reports for other plant 
species (Watson et al., 2003; Jorge et al., 2006; Castillejo et 
al., 2008). The majority of proteins identified here (70.8%) is 
related to photosynthesis, energy, and carbon metabolism 
(Table 2) .These include ribulose-1, 5-bisphosphate 
carboxylase (Spots 3, 11, 12, 18, and 23),  Rubisco small 
subunits (3, 4, 11, 12, 14, 18, and 23), and Rubisco large 
subunits (8 and 16). Those that were up-regulated by stress 
included isoforms of Rubisco, a finding that agrees with that 
of Mahmood et al. (2006), who have examined bacterial leaf 
blight in rice blades. Interestingly, Spot #2 was down-
regulated while Spot #14 was unevenly affected. Rubisco 
prompts both photosynthesis and carbon metabolism. During 
catalysis,   it  is  first  activated   then  carbanylated.  Rubisco  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Early infection by Fusarium graminearum on axial 
surface of wheat glumes. Spikes were spray-inoculated with 
macroconidia suspension and sampled at 0, 12, 24, and 48 
HAI for SEM analysis. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Effects of Fusarium head blight on protein expression 
in wheat spikes, based on comparisons among untreated 
control and spikes sampled at 12, 24, and 48 HAI. Proteins 
were extracted, separated by 2-DE, and visualized by CBB 
R-250 staining. The MW of each protein was determined by 
2-DE markers. Arrows indicate proteins whose expression 
was changed by FHB infection, as measured with PDQuest 
image analyzer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Relative protein abundance (%) from control 
(untreated) and inoculated spikes at 12, 24, or 48 HAI. Error 
bars indicate standard errors. Numbering of spots is same as 
for Figure 2 and Tables 1 and 2.  
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activase can alter that process by facilitating the dissociation 
of tightly bound sugar phosphates via ATP hydrolysis 
(Spreitzer and Savucci, 2002). Stress can cause both 
reversible and irreversible inactivation of Rubisco. However, 
this complementary enzyme releases those inhibitors of 
Rubisco, which is itself regulated by redox controls (Foyer 
and Parry, 2001). Rubisco activase is now the focus of 
research for improving the net rate of photosynthesis in crop 
species (Spreitzer and Savucci, 2002). In our study, oxygen-
evolving enhancer protein 1 (Spots 2 and 5) an important 
component in Photosystem II, was down-regulated in treated 
wheat spikes; which is supported to over expression in rice 
by bacterial blight (Mahmood et al., 2009) (Figs. 2, 3; Tables 
1, 2). Reactive oxygen species (ROS) are generated under 
biotic and abiotic stresses (Zou et al., 2005). Rice seedlings 
exposed to long-term abiotic stress, such as from high salt, 
the abundance of oxygen evolving enhancer protein 2 is 
decreased (Abbasi and Komatsu, 2004). OEE2 can be easily 
removed from the PSII complex in the presence of NaCl. 
Thus, increased levels of this protein might be needed to 
repair damage caused by dissociation and to maintain oxygen 
production (Gazanchian et al., 2007). Putative cytochrome C 
oxidase subunits (6, 9, 10, 13, 16, 17, and 19) were up-
regulated by infection compared with the untreated samples. 
Cytochrome C oxidase, the terminal enzyme of the 
respiratory chain, oxidizes cytochrome c and transfers 
electrons to molecular oxygen, forming molecular water. It is 
induced by high salt, indicating its involvement in conferring 
tolerance to that stress (Yan et al., 2005) as well as resistance 
to blister rust in white pine (Smith et al., 2006). It can 
possibly facilitate energy generation through the respiratory 
chain under stress conditions. Wall-associated kinases 
(WAKs), which play a major role in controlling organ and 
tissue development, are expressed at organ junctions, in the 
apical meristems of shoots and roots, and in expanding leaves 
(Wagner and Kohorn, 2001). We observed that a protein 
from Spot #30, identified as a putative WAK, was markedly 
more abundant after induction by F. graminearum. This 
protein is also increased under Cu stress (Zhang et al., 2009). 
Functional analyses of different WAK gene members in 
Arabidopsis have demonstrated that they operate in pathogen 
resistance, aluminum tolerance, and mineral responses (He et 
al., 1998; Sivaguru et al., 2003; Hou et al., 2005). For 
example, Hou et al. (2005) have shown that although reduced 
expression of WAKL4 leads to hypersensitivity to Na, K, Cu, 
and Zn, its over-expression confers Ni tolerance. We 
identified an important plasma membrane protein (Spots 20 
and 21), a chloride carrier/channel, that was up-regulated in 
treated spikes. All functionally characterized members of the 
Chloride Carrier (ClC) family are implicated in a voltage-
regulated process. Those channels provide a variety of 
physiological roles, e.g., cell volume regulation, stabilization 
of membrane potential, signal transduction, and trans-
epithelial transport (Worden et al., 2009). Nitrate is required 
for plant growth, and most is stored in the central vacuole. 
Some members of the ClC family, such as the torpedo-fish 
ClC-0 and mammalian ClC-1, are anion channels, whereas 
the E. coli EriC and mammalian ClC-4 and ClC-5 are Cl-/H+ 
exchangers. Several plant associates of the ClC family may 
be anion channels that function in nitrate homeostasis. 
However, Arabidopsis thaliana ClCa is localized to the 
tonoplast membrane of the plant vacuole (Bergsdorf et al., 
2009), but is also able to accumulate nitrate in the vacuole, 
behaving as an NO3

-/H+ exchanger (de Angeli et al., 2006).  
In the cytoplasm, we identified isoflavone reductase homolog 
IRL, which was markedly up-regulated compared with the 

control. These results reflect those reported for soybean roots 
in response to Fusarium solani f. sp. Glycines (Iqbal et al., 
2005) as well as participate in the restriction of pathogen 
invasion (Shadle et al., 2003). IRL may be involved in the 
synthesis of a non-thiol reducing agent that can act, either 
chemically or enzymatically, as an antioxidant protectant. A 
range of non-sulfur plant constituents, including flavonoids, 
a-tocopherols, ascorbic acid, and carotenoids, also guards 
against ROS and free radicals (lnzé and van Montagu, 1995). 
IRL expression is correlated closely with the availability of 
glutathione, being persistently induced in seedlings but 
down-regulated rapidly when levels of glutathione are 
restored. This glutathione-dependent regulation indicates that 
IRL may play a crucial role in the establishment of a thiol-
independent response to oxidative stress when glutathione is 
depleted in maize (Petrucco et al., 1996). In our study, we 
identified (1,3;1,4) β-glucanase (EC 3.2.1.73; Spot #31), 
which was gradually increased, up to 4-fold, in treated spikes. 
This enzyme, which hydrolyzes 1,3;1,4-β-glucosidic linkages 
on 1,3;1,4-β-glucan, is an important component of cell walls. 
Transgenic plants spontaneously produce brown specks on 
their leaves, similar in appearance to those reported with an 
initiation type of disease-lesion-mimic mutants, and, 
occasionally, on older leaves even without pathogen 
inoculation. Expression of the related gene is drastically 
increased after the emergence of that lesion-mimic phenotype 
(Nishizawa et al., 2003). Additionally, 1, 3-β-glucanase (EC 
3.2.1.39) is induced transcriptionally in many plants after 
infection by different types of pathogens, and is known to 
control a wide range of developmental processes (Simmons, 
1994). Furthermore, 1,3;1,4 β-glucans, a major constituent of 
endosperm cell walls and, to a lesser degree, the cell walls of 
nearly all tissues in the Poaceae family, are thought to play an 
important role in vegetative growth (Gibeaut and Carpita, 
1993). Whereas 1,3-β-glucanases have been demonstrated to 
function both in plant defenses and development, 1,3;1,4 β-
glucanases have been studied most extensively with the 
growth of cereal plants. They have been shown to have key 
roles in endosperm degradation during kernel germination 
and in the elongation of vegetative cell walls (Simmons, 
1994). 
 

Materials and methods 

 

Preparation of Macroconidia Inoculums 
 

Fusarium graminearum Strain 6 (SCK-04) was cultured in 
the dark on potato dextrose agar (PDA) for 5 d at 25ºC. This 
macroconidial suspension was produced by transferring 
several PDA plugs (1 cm × 1 cm) from an established fungal 
culture onto 400 mL of carboxylmethylcellulose (CMC) 
broth (15 g of CMC, 1 g of yeast extract, 0.5 g of 
MgSO4·7H2O, 1 g of NH4NO3, 1 g of KH2PO4, and 1 L of 
H2O). This culture was incubated on a rotary shaker (150 
rpm) at 24ºC for 9 to 13 d (McCallum and Tekauz, 2002; 
Geddes et al., 2008). Spores were counted on a 
hemacytometer. 
 

Plant Growth and Artificial Inoculations 
 
Field tests were conducted on the experimental grounds of 
Chungbuk National University, Cheong-ju, Chungbuk, South 
Korea. A Korean wheat cultivar, ‘Keumgang’, was selected 
as model plant because it is popular for making bread and 
noodles,  and  also  shows  moderate  resistance  to  FHB. For  
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Table 2. Profiles for protein expression in response to Fusarium head blight, as identified via MALDI-TOF/TOF-MS. 
SN AN Protein description PS1 EMW TMW EPI TPI PM PQ PC PS2 
2 P12359 Oxygen-evolving enhancer protein 1, chloroplastic  258 31.2 35.4 4.51 5.58 2 55 30.2 GGSTGYDNAVALPAGGR 

P07398 
Ribulose bisphosphate carboxylase small chain clone 
512  

208 13.3 5.84 3 51 23.9 EHNASPGYYDGR 

gi|207080698 
Chloroplast ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit 

197 7.9 9.42 3 53 28.8 EHNASPGYYMGR 3 

P00871 
Ribulose bisphosphate carboxylase small chain pws4.3, 
chloroplastic  

157 

7.76 

19.7 

4.60 

8.99 3 53 15.5 EHNSSPGYYDGR 

4 P07398 
Ribulose bisphosphate carboxylase small chain clone 
512 

200 8.33 13.3 4.65 5.84 3 51 23.9 EHNASPGYYDGR 

5 P12359 Oxygen-evolving enhancer protein 1, chloroplastic  228 31.3 35.4 4.61 5.58 2 68 20.2 DGIDYAAVTVQLPGGER 
6 P84733 Putative cytochrome c oxidase subunit ii ps17  66 35.5 1.7 4.57 9.62 2 12 100 VVEALSPR 
7 P52580 Isoflavone reductase homolog irl  105 35.3 32.8 4.66 5.69 2 58 26.5 FFPSEFGLDVDR 

8 Q43831 
Rubisco large subunit-binding protein subunit beta, 
chloroplastic  

63 62.5 53.7 4.75 4.88 2 69 35.8 SSENNLYVVEGMQFER 

9 P84733 Putative cytochrome c oxidase subunit ii ps17  65 62.5 1.7 4.68 9.62 2 11 100 VVEALSPR 
10 P84733 Putative cytochrome c oxidase subunit ii ps17  67 24.8 1.7 4.81 9.62 2 7 100 VVEALSPR 

P00871 
Ribulose bisphosphate carboxylase small chain pws4.3, 
chloroplastic  

202 19.7 8.99 3 46 15.5 EHNSSPGYYDGR 

gi|207080698 
Chloroplast ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit  

197 7.9 9.42 3 46 28.8 EHNASPGYYMGR 
11 

 

P07398 
Ribulose bisphosphate carboxylase small chain clone 
512  

274 

7.75 

13.3 

4.87 

5.84 4 44 31 EHNASPGYYDGR 

gi|207080698 
Chloroplast ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit  

206 7.9 9.42 3 54 28.8 EHNASPGYYMGR 

P00871 
Ribulose bisphosphate carboxylase small chain pws4.3, 
chloroplastic  

156 19.7 8.99 3 54 15.5 EHNSSPGYYDGR 12 

P07398 
Ribulose bisphosphate carboxylase small chain clone 
512  

241 

8.36 

13.3 

4.94 

5.84 4 52 31 EHNASPGYYDGR 

13 P84733 Putative cytochrome c oxidase subunit ii ps17 1 62 35.1 1.7 4.87 9.62 2 9 100 VVEALSPR 

14 Q7X999 
Ribulose bisphosphate carboxylase/oxygenase activase 
2, chloroplastic  

66 40.8 48.3 4.94 6.78 2 66 45.1 GLAYDISDDQQDITR 

Q43831 
Rubisco large subunit-binding protein subunit beta, 
chloroplastic  

72 53.7 4.88 2 74 25.8 SSENNLYVVEGMQFER 
16 

P84733 Putative cytochrome c oxidase subunit ii ps17  67 
62.7 

1.7 
4.83 

9.62 2 9 100 VVEALSPR 
17 P84733 Putative cytochrome c oxidase subunit ii ps17  80 64.2 1.7 5.01 9.62 2 11 100 VVEALSPR 

gi|207080698 
Chloroplast ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit  

192 7.9 9.42 3 50 28.8 EHNASPGYYMGR 

P00871 
Ribulose bisphosphate carboxylase small chain pws4.3, 
chloroplastic  

151 19.7 8.99 3 50 15.5 EHNSSPGYYDGR 18 

P07398 
Ribulose bisphosphate carboxylase small chain clone 
512  

248 

7.72 

13.3 

5.24 

5.84 4 47 31 EHNASPGYYDGR 

19 P84733 Putative cytochrome c oxidase subunit ii ps17  68 33 1.7 5.33 9.62 2 9 100 VVEALSPR 
20 gi|226462786 Chloride carrier/channel family  54 36.2 69.9 5.23 5.84 2 6 29 IAPLSVTR 
21 gi|226462786 Chloride carrier/channel family  51 37.2 69.9 5.38 5.84 2 9 13 IAPLSVTR 
22 gi|255551479 Conserved hypothetical protein  41 42.8 8.2 5.13 10.89 2 4 12.1 AVAETVPR 

gi|207080698 
Chloroplast ribulose-1,5-bisphosphate 
carboxylase/oxygenase small subunit  

162 7.9 9.42 3 47 28.8 EHNASPGYYMGR 

P00871 
Ribulose bisphosphate carboxylase small chain pws4.3, 
chloroplastic 

123 19.7 8.99 3 47 15.5 EHNSSPGYYDGR 23 

P07398 
Ribulose bisphosphate carboxylase small chain clone 
512  

208 

7.88 

13.3 

5.67 

5.84 4 45 31 EHNASPGYYDGR 

29 gi|37718901 Hypothetical protein  42 38 87.7 6.13 9.35 2 27 32.2 KSLSSPAISR 
30 gi|56784948 Wall-associated kinase 4-like  34 39.4 77.7 6.29 6.18 2 7 15.7 ALSWPLR 

31 gi|311764 (1,3;1,4) beta glucanase  51 27.7 35.0 6.31 6.5 2 69 19.2 
LVVSESGWPSGGG 
TAATPANAR 

Criteria: SN spot number; AN accession number; PS1 protein score; EMW experimental molecular weight (kDa); TMW Theoretical molecular weight 

(kDa); EPI experimental pI value; TPI theoretical pI value; PM peptide matches; PQ peptide queries; PC protein coverage (%); PS2 peptide 

sequence 

 

pathogen inoculation, we collected spikes at 5 d after anthesis 
and quickly placed in test tubes filled with distilled water. 
Samples were prepared according to the cut-spike method 
(Han and Kim, 2005). After a freshly mixed conidial 
suspension (10 µL of 4.5 × 104 macroconidia mL-1) was 
added to each tube, the spikes were transferred to a chamber 
(2 m × 2 m × 90 cm) that was covered with polythene. 
Growing conditions included a temperature of 25 to 26ºC and 
relative humidity of 60%. Three groups of five to six spikes 

each were collected at 12, 24, and 48 hours after inoculation 
(HAI). Control spikes were treated only by spraying them 
with water. All samples were immediately frozen in liquid 
nitrogen and stored at –80ºC prior to protein extraction, while 
those for SEM were used immediately. 
 

Scanning Electron Microscopy (SEM) 
 

Wheat glumes were cut into 0.5 × 0.5 mm segments. For 
primary fixation, the samples were held in 2.5% 
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glutaraldehyde and 0.1 M phosphate buffer (pH 7.4) for 3 to 
4 h. Afterward, they were rinsed twice in phosphate buffer 
for 15 min each. Post-fixation, the samples were placed in 
1% osmium tetroxide, and washed again for 15 min. They 
were then dehydrated with concentrated ethanol (30% and 
100%; 10 min each). These tissues were preserved in 
isoamylacetate and air-dried. Afterward, they were pinned to 
aluminum stubs with conductive paint and coated with a gold 
palladium alloy in a Kinney (KSE-2A-M) vacuum 
evaporator. The abaxial face of the each glume was examined 
at 5 kV with a LEO 1530VP Ultra-high-resolution VP FE-
SEM (LEO Electron Microscopy Ltd., Germany). Digital 
images were acquired with Leo 32 Image software by 
controlling the electron beam scanning raster by computer. 
Three glumes per sample per time point were examined in 
combination before the best visualized image was selected 
according to a method modified from that of Pritsch et al. 
(2000). 
 

Protein Extraction and Gel Electrophoresis 
 

From control and inoculated spikes, we prepared proteins for 
IEF according to a modified version of the trichloroacetic 
acid (TCA)/acetone method (Damerval et al., 1986; 
Porubleva et al., 2001; Kim et al., 2010). Each 200 µL of 
sample was suspended in a 1:4 (sample:extraction buffer) 
volume of TCA solution (10% TCA/acetone solution 
containing 0.07% 2-mercaptoethanol plus a 0.04% protease 
inhibitor cocktail for plant cell and tissue extracts). After 
vortexing, the solution was frozen at –20°C for 1 h, then 
centrifuged at 14,000×g for 30 min. The precipitate was 
suspended in wash buffer (acetone containing 0.07% 2-
mercaptoethanol plus 0.04% protease inhibitor cocktail). 
After standing for 12 h at –20°C, the suspension was 
centrifuged at 14,000×g for 30 min. Afterward, the 
precipitate was dried in vacuo, and a part of the resultant 
powder was suspended in 500 µL of sample lysis buffer [6 M 
urea, 2 M thio-urea, 10 mM Tris-HCl, 0.75% ampholine (pH 
3 to 10), 50 mM DTT, 4% CHAPS, and 0.4% protease 
inhibitor cocktail]. After incubating at room temperature for 
2 h with continuous vortexing, the suspension was 
centrifuged at 14,000×g for 30 min and the resulting 
supernatant was subjected to IEF. Protein concentrations in 
the sample were determined by the method of Bradford 
(1976), using a Bio-Rad protein assay kit (Bio-Rad, 
Hercules, CA, USA) and bovine serum albumin (BSA) as the 
standard. Soluble proteins that are active under stress were 
examined by 2-DE according to the protocol of O’Farrell 
(1975). For the first dimension, sample solutions (400 µg) 
were loaded on the acidic side of the IEF tube gels. To avoid 
overlap by the protein spots and to increase the resolution 
capacity, we utilized an IEF gel specific for a pH range of 3 
to 10 in addition to those for acidic and basic pH values. 
SDS-PAGE in the second dimension (Nihon Eido, Tokyo, 
Japan) was performed with 12% separation and 5% stacking 
gels. Protein spots on the 2-DE gels were visualized by 
staining with Coomassie Brilliant Blue (CBB R-250). Each 
sample was run five times, and the best triplicate visualized 
gels were selected for image analysis. 
 

Gel Image Analysis 
 

All gel images were captured with a flatbed scanner (HP 
Scanjet G4010; USA; 300 dpi, 32 bits per pixel). Computer-
assisted 2-DE image analysis was evaluated with PDQuest 
software (Version 7.1; Bio-Rad). Isoelectric point (pI) and 
molecular weight (MW) of each protein were determined by 

2-DE markers (Bio-Rad). The amount covered by a protein 
spot was expressed as the volume of that spot, defined as the 
sum of the intensities of all pixels that made up the spot. To 
correct for variability due to CBB-staining and to reflect any 
quantitative variations in intensities, the spot volumes were 
normalized as a percentage of the total volume in all spots 
present on the gel. Three biological replications were used; 
spots that were up- or down-regulated in at least two 
biological replications were considered reproducibly 
regulated. Statistical analysis of the data was carried out with 
Microsoft Excel 2007, and the standard error (SE) was 
calculated from three spots on separate gels. 
 

In-gel Digestion and MALDI-TOF/TOF-MS Analysis 
 

Protein spots were manually excised from the 2-DE gel, and 
in-gel digestion by trypsin was performed as described by 
Kim et al. (2005). Briefly, CBB-stained gel pieces were 
washed several times with water and then with 30% methanol 
before being de-stained with 10 mM NH4CO3 in 50% ACN. 
Proteins were reduced with 10 mM DTT in 100 mM NH4CO3 

at 56°C for 1 h, then alkylated with 55 mM IAA 
(iodoacetamide) in 100 mM NH4CO3 in the dark for 40 min. 
The gel pieces were minced, lypolized, and re-hydrated 
overnight at 37°C in 50 mM NH4CO3 with 11.9 ng µL-1 of 
sequencing-grade-modified trypsin (Promega Corp.). After 
tryptic digestion, the peptides were extracted four times with 
a solution containing 0.1% formic acid in 50% ACN. That 
solution was concentrated to dryness under a vacuum. 
Peptides that had been digested by trypsin were dissolved in 
0.5% (v/v) trifluoroacetic acid (TFA) and de-salted with a 
ZipTip C18 (Millipore, Bedford, MA, USA). Those purified 
peptides were then eluted directly onto a MALDI plate by 
using α-cyano-4-hydroxy-cinnamic acid (CHCA) matrix 
solution [10 mg mL-1 of CHCA in 0.5% (v/v) TFA/50% (v/v) 
acetonitrile; 1:1]. All mass spectra were acquired in the 
reflection mode by a 4700 Proteomics Analyzer (Applied 
Bio-Systems, Framingham, MA, USA). External calibration 
was performed with a standard peptide mixture of des-Arg 
bradykinin, angiotensin, Glu-fibrinopeptide B, 
adrenocorticotropic hormone (ACTH) clip 1-17, ACTH clip 
18-39, and ACTH clip 7-38.  
 

Bioinformatics 
 

Our acquired MS/MS spectra were evaluated with an in-
house licensed search engine (Mascot Version 2.3.01; Matrix 
Science, London, England, UK) against the viridiplantae 
(green plants) within the UNIPROT_SPROT and NCBInr 
databases. The carbamidomethylation of cysteines was set as 
a fixed modification while the oxidation of methionines was 
set as a variable modification. Trypsin was specified as the 
proteolytic enzyme and one missed cleavage was allowed. 
Mass tolerance of the precursor ion was 25 ppm; that of the 
fragment ions, 0.5 Da. The instrument setting was specified 
as ‘MALDI-TOF/TOF’. Protein hits were validated if the 
identification involved at least 10 top-ranking peptides with 
p-values ≤0.05 and peptide scores >34. When those peptides 
matched multiple members of a protein family, the presented 
protein was selected based on the highest score and the 
greatest number of matching peptides. For functional 
categorization based on gene ontology, we utilized the 
Protein Information Resources, or PIR (http://pir.georgetown. 
edu). This integrated public bioinformatics source supports 
genomics, proteomics, and systems biology research. It is 
used for determining gene ontology-based molecular 
functions, cellular components, and biological processes, 
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which are then automatically classified in the data set 
according to biological process per Batch Retrieval with the 
iProClass database (Huang et al., 2003). 
 

Conclusion 

 
By using SEM and proteomics techniques, we have identified 
several proteins associated with the response by wheat spikes 
to Fusarium inoculation. They present differential changes in 
abundance over a time-dependent course of infection. Most 
are related to the plastids, especially chloroplasts, which are 
involved in carbon metabolism and photosynthesis. Our 
results indicate that plastids, plasma membranes, and kinase-
like proteins show defense responses following infection. 
Therefore, we suggest that proteome studies with 2-DE 
provide valuable tools for identifying the acidic and basic 
proteins that respond to this fungus, as well as for better 
understanding their interactive effect in conferring pathogen 
resistance. This will be beneficial for future FHB research 
when using marker-assisted selection and gene transfer 
technology. 
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